The addition of any numbers of vector provide the magnitude as well as the direction of the resultant vector, hence the mentioned first option is not true.
The addition of vector required to connect the head of the one vector with the tail of the other vector and any vector can be moved in the plane parallet to the previous location, so, the mentioned second and third options are true.
Calm, sunny days with wind moving away from the center.
Answer:
4 tonne/m³
Explanation:
ρ = m / V
ρ = 49 g / (π (17.4 mm / 2)² (50.3 mm))
ρ = 0.0041 g/mm³
Converting to tonnes/m³:
ρ = 0.0041 g/mm³ (1 kg / 1000 g) (1 tonne / 1000 kg) (1000 mm / m)³
ρ = 4.1 tonne/m³
Rounding to one significant figure, the density is 4 tonne/m³.
Answer:
F= 600 N
Explanation:
Given that
Initial velocity ,u= 0 m/s
Final velocity ,v= 30 m/s
mass ,m = 0.5 kg
time ,t= 0.025 s
The change in the linear momentum is given as
ΔP= m (v - u)
ΔP= 0.5 ( 30 - 0 ) kg.m/s
ΔP= 15 kg.m/s
We know that from second law of Newtons


Now by putting the values

F= 600 N
<h2>Hello!</h2>
The answer is: 19.59 m
<h2>Why?</h2>
Since there is no information about the launch type, we can assume that the ball is thrown vertically upward.
When the ball reaches the maximum height, just at that moment, the velocity turns to 0, and after that moment, the ball starts falling, so:
We will use the following formula:

Where:
Vf= Final velocity = 0
Vi= Initial velocity = 
g = Gravity Acceleration = 
s = Traveled distance

Have a nice day!