Answer:
I think so
Explanation:
It would provide an extra energy boost with lower sugars. Students bring drinks to school anyways so it would be nice to offer some that aren't as detrimental.
I'm only in middle school but i believe its coal.
The average mass of an atom is calculated with the formula:
average mass = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2) + ... an so on
For the boron we have two isotopes, so the formula will become:
average mass of boron = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2)
We plug in the values:
10.81 = 0.1980 × 10.012938 + 0.8020 × mass of isotope (2)
10.81 = 1.98 + 0.8020 × mass of isotope (2)
10.81 - 1.98 = 0.8020 × mass of isotope (2)
8.83 = 0.8020 × mass of isotope (2)
mass of isotope (2) = 8.83 / 0.8020
mass of isotope (2) = 11.009975
mass of isotope (1) = 10.012938 (given by the question)
Answer: Fire requires oxygen to burn. Water "smothers" fire and prevents it from acquiring more oxygen. Fire also requires heat, which cool water may prevent/remove.
Answer:
- <em><u>Option A. </u></em><u><em>2KClO₃ → 2KCl + 3O₂</em></u>
Explanation:
There are five basic general types of chemical reactions:
- Synthesis or combination reaction
- Single replacement reactions
- Double replacement reactions
The given reactions are:
- <u>2KClO₃ → 2KCl + 3O₂</u>
Which is, indeed, a decomposition reaction because the reactant, KClO₃, is a single substance that undergoes a reaction in which it yields two new substances, known as products: KCl and O₂.
- <u>4Na + O₂ → 2Na₂O</u> is a synthesis or combination reaction because two reactants, Na and O₂, combine for the formation of one single new product, Na₂O.
- <u>ZnS + 3 O₂ → 2ZnO + 2SO₂ </u>is a single replacement reaction because oxygen is replacing Zn and S in ZnS to form ZnO and plus SO₂.
- <u>2NaBr + CaF₂ → 2NaF + CaBr₂ </u>is a double replacement reaction because two ions (Br⁻ from NaBr and F⁻ from CaF₂) are exchanging places with other two ions (Na⁺ from NaBr and Ca²⁺ from CaF₂) two form two new ionic compounds (NaF and CaBr₂).