Answer:
691.7 mmHg is the resulting pressure
Explanation:
Tha Gay-Lussac's law states that the pressure of a gas is directly proportional to its absolute temperature under constant volume. The equation is:
P1T2 = P2T1
<em>Where P is pressure and T asbolute temperature of 1, initial state and 2, final state of the gas.</em>
<em />
Computing the values of the problem:
T1 = 273 + 25 = 298K
P1 = 755.0mmHg
T2 = 273 + 0 = 273K
P2 = ?
755.0mmHg*273K = P2*298K
<h3>691.7 mmHg is the resulting pressure</h3>
To solve this we use the
equation,
M1V1 = M2V2
where M1 is the concentration of the stock solution, V1 is the
volume of the stock solution, M2 is the concentration of the new solution and
V2 is its volume.
2.5 M x V1 = 1.0 M x .250 L
<span>V1 = 0.10 L or 100 mL of the 2.5 M HCl solution is needed
Hope this helps.</span>
Answer:
Tetrazine is a compound that consists of a six-membered aromatic ring containing four nitrogen atoms with the molecular formula C2H2N4.
(See the image)
Hope it helps!
Answer: (C) Vaporizing
Explanation:
Vaporization is the process in which the substance change the state of of liquid into the gas state.
The vaporization process require the largest input of the energy as when the state is in the solid state then, the solid substances contain the strong forces of the attraction and they require high energy to break these strong bonds.
For changing the liquid state into the gases state we require to overcome the surface tension and require enough energy for acquiring the vaporization state.
Therefore, option (C) is correct.