Answer:
0.085 moles of N₂O₅ are needed
Explanation:
Given data:
Mass of NO₂ produces = 7.90 g
Moles of N₂O₅ needed = ?
Solution:
2N₂O₅ → 4NO₂ + O₂
Number of moles of NO₂ produced :
Number of moles = mass/ molar mass
Number of moles = 7.90 g/ 46 g/mol
Number of moles = 0.17 mol
now we will compare the moles of NO₂ with N₂O₅.
NO₂ : N₂O₅
4 : 2
0.17 : 2/4×0.17 = 0.085 mol
Thus, 0.085 moles of N₂O₅ are needed.
Answer:
25°C
Explanation:
Combined Gas Law (P₁V₁)/T₁ = (P₂V₂)/T₂
(0.947 atm)(150 mL)/25°C = (0.987 atm)(144mL)/T₂
5.682 = 142.128/T₂
T₂ = 142.128/5.682
T₂ = 25.0137272756°C = 25°C
Answer: Dissociation constant of the acid is
.
Explanation: Assuming the acid to be monoprotic, the reaction follows:

pH of the solution = 6
and we know that
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
![[H^+]=antilog(-pH)](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dantilog%28-pH%29)
![[H^+]=antilog(-6)=10^{-6}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dantilog%28-6%29%3D10%5E%7B-6%7DM)
As HA ionizes into its ions in 1 : 1 ratio, hence
![[H^+]=[A^-]=10^{-6}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BA%5E-%5D%3D10%5E%7B-6%7DM)
As the reaction proceeds, the concentration of acid decreases as it ionizes into its ions, hence the decreases concentration of acid at equilibrium will be:
![[HA]=[HA]-[H^+]](https://tex.z-dn.net/?f=%5BHA%5D%3D%5BHA%5D-%5BH%5E%2B%5D)
![[HA]=0.1M-10^{-6}M](https://tex.z-dn.net/?f=%5BHA%5D%3D0.1M-10%5E%7B-6%7DM)
![[HA]=0.09999M](https://tex.z-dn.net/?f=%5BHA%5D%3D0.09999M)
Dissociation Constant of acid,
is given as:
![K_a=\frac{[A^-][H^+]}{HA}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7BHA%7D)
Putting values of
in the above equation, we get


Rounding it of to one significant figure, we get

None of them
1st property of nonmetals "They don't conduct electricity. Except Carbon