Answer:
b. 1.1 m
Explanation:
It is given that the total distance between the masses is equal to the length of the board, which is 3 m. Therefore,

where,
s₁ = distance of fulcrum from left mass
s₂ = distance of fulcrum from right mass
In order to achieve balance, the torque due to both masses must be equal:

s₁ = 1.1 m
Hence, the correct option is:
<u>b. 1.1 m</u>
Answer:
F = -307.4 N
Explanation:
It is given that,
Mass of the baseball, m = 0.145 kg
Initial speed of the baseball, u = 60 m/s
Final speed of the baseball, 
Time of contact, 
(a) It is assumed to find the horizontal component of average force. It is given by :
F = -307.4 N
So, the horizontal component of average force is 307.4 N. Hence, this is the required solution.
Answer:

this force is
times more than the gravitational force
Explanation:
Kinetic Energy of the electron is given as


now the speed of electron is given as

now we have


now the maximum force due to magnetic field is given as



Now if this force is compared by the gravitational force on the electron then it is


so this force is
times more than the gravitational force
Answer:
KE=800,000
Explanation:
The formula for kinetic energy is KE=1/2mv^2 or Kinetic Energy= 0.5*mass*velocity^2
so 1000 is the mass and 40 is the velocity
KE=0.5*1000*40^2
KE=0.5*1,000*1,600
KE=800,000 Joules
vib. motion motion of wire of guitar
circular motion revolution of earth around sun
1ml 1cm3
1m3 100cm3
volume of liquid measuring cylinder