MA= output force/input force
MA= 100N/20N
MA= 50
The quantity of substance remains after 850 years is 8.98g if the half life of radioactive radium is 1,599 years.
<h3>What is half life period? </h3>
The time taken by substance to reduce to its half of its initial concentration is called half life period.
We will use the half- life equation N(t)
N e^{(-0.693t) /t½}
Where,
N is the initial sample
t½ is the half life time period of the substance
t2 is the time in years.
N(t) is the reminder quantity after t years .
Given
N = 13g
t = 350 years
t½ = 1599 years
By substituting all the value, we get
N(t) = 13e^(0.693 × 50) / (1599)
= 13e^(- 0.368386)
= 13 × 0.691
= 8.98
Thus, we calculated that the quantity of substance remains after 850 years is 8.98g if the half life of radioactive radium is 1,599 years.
learn more about half life period:
brainly.com/question/20309144
#SPJ4
The larger the piece the longer it will take to break down. This is because it has more mass that needs to be broken down.
One oxygen atom shares two electron with two hydrogen atoms in this way water molecules are formed. The bond between oxygen and hydrogen is covalent bond.
<h3>What is covalent bond ?</h3>
An electron exchange that results in the formation of electron pairs between atoms is known as a covalent bond. Bonding pairs or sharing pairs are the names given to these electron pairs.
Covalent bonding is the stable equilibrium of the attractive and repulsive forces between atoms when they share electrons.
According to the amount of shared electron pairs, there are three different forms of covalent bonds. single covalent bond is one type of covalent bond. covalent double bond and covalent triple bond.
Thus, option B is correct .
To learn more about covalent bond follow the link ?
brainly.com/question/10777799
#SPJ1