Answer:
Work done, W = 0.0219 J
Explanation:
Given that,
Force constant of the spring, k = 290 N/m
Compression in the spring, x = 12.3 mm = 0.0123 m
We need to find the work done to compress a spring. The work done in this way is given by :


W = 0.0219 J
So, the work done by the spring is 0.0219 joules. Hence, this is the required solution.
Speed is equal to distance traveled divided by the time. So it's 3.5 m/s
(a) 328.6 kg m/s
The linear impulse experienced by the passenger in the car is equal to the change in momentum of the passenger:

where
m = 62.0 kg is the mass of the passenger
is the change in velocity of the car (and the passenger), which is

So, the linear impulse experienced by the passenger is

(b) 404.7 N
The linear impulse experienced by the passenger is also equal to the product between the average force and the time interval:

where in this case
is the linear impulse
is the time during which the force is applied
Solving the equation for F, we find the magnitude of the average force experienced by the passenger:

Atom A and atom C are the same element.
We don't know anything about the amount of distance it travels, but that's okay. The only equation we need here is
velocity(final) = velocity(initial) + acceleration * time
vf = vi + (a * t)
The ball is dropped from rest, so vi = 0 m/s.
We want it so that the ball hits the ground with a final velocity of 60 m/s, so vf = 60 m/s.
We are given the acceleration due to gravity, a = 9.8 m/s^2.
We are solving for the time, t = ?.
Now we just plug in the values.
vf = vi + (a * t)
60 m/s = 0 m/s + (9.8 m/s^2)*(t)
60 = 9.8t
60 / 9.8 = t
t = 6.122 s
Hopefully this is the right answer.