Answer:
False
Explanation:
The game will go into more innings until a team outscores another. So, a game cannot end in a tie.
Here if we assume that there is no air friction on both balls then we can say

now the acceleration is given as


so here both the balls will have same acceleration irrespective of size and mass
so we can say that to find out the time of fall of ball we can use


now from above equation we can say that time taken to hit the ground will be same for both balls and it is irrespective of its mass and size
Answer= 8m/s
Because total Momentum before= total momentum after
Momentum before (p=mu)
p=(4)(12)= 48
p=2(0)=0
So total momentum before=48
Momentum after (p=mu)
Masses combined —2+4=6kg
p=6u
Mb=Ma
48=6u
u=8m/s
F=ma, in this case your force=-883 N and mass = 90 kg. F/m=a therefore acceleration=-883/90=-9.81 m/s/s
<h2>Answer: about the same size of the gap or slit</h2>
Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs.
Therefore:
<h2>Waves diffract the most when their wavelength is <u>about the same size of the gap
</u></h2>
<u />