1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
3 years ago
12

8. A 60 kg runner has 1500 J of kinetic energy. How fast is he moving?

Physics
1 answer:
tresset_1 [31]3 years ago
6 0

Answer: 7.07 m/s

Explanation:

Mass of runner = 60 kg runner

Kinetic energy = 1500J

Speed of runner = ?

Recall that kinetic energy is the energy possessed by a moving object, and it depends on its mass and speed by which it moves.

Hence, K.E = 1/2 x mass x (speed)^2

1500J = 1/2 x 60kg x (speed)^2

1500J = 30kg x (speed)^2

(speed)^2 = 1500J/30kg

(speed)^2 = 50

To get the value of speed, find the square root of 50

speed = √50

speed = 7.07 m/s

Thus, the runner moves as fast as 7.07 m/s

You might be interested in
How many seconds in a day? A hole day.
gizmo_the_mogwai [7]
1 year<span> consists of 365 days. 1 day has 24 hours, each hour has 60 minutes and each minute has 60 </span>seconds. <span>1 day = (24 hours/day) × (60 minutes/hour) × (60 seconds/minute) = 86400 seconds/day

Hope that helped :)</span>
4 0
3 years ago
Write about Archimedes principle​
Schach [20]

Answer:

Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics.

8 0
2 years ago
Read 2 more answers
A baseball, which has a mass of 0.685 kg., is moving with a velocity of 38.0 m/s when it contacts the baseball bat duringwhich t
Evgen [1.6K]

Answers:

a) 65.075 kgm/s

b) 10.526 s

c) 61.82 N

Explanation:

<h3>a) Impulse delivered to the ball</h3>

According to the Impulse-Momentum theorem we have the following:

I=\Delta p=p_{2}-p_{1} (1)

Where:

I is the impulse

\Delta p is the change in momentum

p_{2}=mV_{2} is the final momentum of the ball with mass m=0.685 kg and final velocity (to the right) V_{2}=57 m/s

p_{1}=mV_{1} is the initial momentum of the ball with initial velocity (to the left) V_{1}=-38 m/s

So:

I=\Delta p=mV_{2}-mV_{1} (2)

I=\Delta p=m(V_{2}-V_{1}) (3)

I=\Delta p=0.685 kg (57 m/s-(-38 m/s)) (4)

I=\Delta p=65.075 kg m/s (5)

<h3>b) Time </h3>

This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately 1.0 cm=0.01 m:

V_{2}=V_{1}+at (6)

V_{2}^{2}=V_{1}^{2}+2ad (7)

Where:

a is the acceleration

d=0.01 m is the length the ball was compressed

t is the time

Finding a from (7):

a=\frac{V_{2}^{2}-V_{1}^{2}}{2d} (8)

a=\frac{(57 m/s)^{2}-(-38 m/s)^{2}}{2(0.01 m)} (9)

a=90.25 m/s^{2} (10)

Substituting (10) in (6):

57 m/s=-38 m/s+(90.25 m/s^{2})t (11)

Finding t:

t=1.052 s (12)

<h3>c) Force applied to the ball by the bat </h3>

According to Newton's second law of motion, the force F is proportional to the variation of momentum  \Delta p in time  \Delta t:

F=\frac{\Delta p}{\Delta t} (13)

F=\frac{65.075 kgm/s}{1.052 s} (14)

Finally:

F=61.82 N

6 0
3 years ago
Read 2 more answers
A transmission diffraction grating with 420 lines/mm is used to study the light intensity of di event orders (n). A screen is lo
Goshia [24]

Answer:

Explanation:

Diffraction grating is used to form interference pattern of dark and bright band.

Distance between adjacent slits (a ) = 1 / 420 mm

= 2.38 x 10⁻³ mm

2.38 x 10⁻⁶ m

wave length of red light

= 680 x 10⁻⁹ m

For bright red band

position x on the screen

= n λD / a ,         n = 0,1,2,3 etc

D = distance of screen

putting n = 1 , 2 and 3 , we can get three locations of bright red band.

x₁ = λD / a

=  680 x 10⁻⁹ x 2.8 / 2.38 x 10⁻⁶

= .8 m

= 80 cm

Position of second bright band

= 2 λD / a

= 2 x 80

= 160 cm

Position of third bright band

= 3 λD / a

= 3 x 80

= 240 cm

5 0
3 years ago
A vector starts at the point (0.0) and ends at (2,-7) what is the magnitude of the displacement
Leto [7]

Answer:

|x| = √53

Explanation:

We are told that the vector starts at the point (0.0) and ends at (2,-7) .

Thus, magnitude of displacement is;

|x| = √(((-7) - 0)² + (2 - 0)²)

|x| = √(49 + 4)

|x| = √53

5 0
3 years ago
Other questions:
  • A person with a weight of 956 N runs up a 2.41 m staircase. If it takes 4.17 seconds to reach the top, how much power was genera
    7·1 answer
  • Calculate the velocity of a car that travels 556 kilometers northeast in 3.4 hours leave your answer in kilometers per hour
    13·1 answer
  • Which of the following instruments can detect the presence of a voltage, but not the voltage level?
    7·2 answers
  • What distinguishes mass from weight?
    9·2 answers
  • What causes an atom to be neutral? Equal number of protons and neutrons Equal distance between the nucleus and electrons Equal n
    10·1 answer
  • What is used in the name of ionic compounds containing a cation with multiple charges to indicate which charge?
    6·1 answer
  • A race starts and finishes a race that is 50,000m. (30miles). The time is 23 minutes. The final velocity is 67m/s. What is the a
    13·1 answer
  • What is the diffference between distance and displacement
    14·1 answer
  • A student's room has a TV (250 W) ,heater (1150 W) and lamp (200 W) Electricity costs 10 fills per KWh. Calculate how much it wo
    15·1 answer
  • What is heat energy ? Plz
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!