Answer:

Explanation:
Given data
Electric potential at point a is Ua=5.4×10⁻⁸J
q₂ moves to point b where a negative work done on it
Required
Electric potential energy Ub
Solution
When a particle moves from a point where the potential is Ua to a point where it is Ub the change in potential energy is equal to work done where the force exerted on the charge is conservative and work done is given by:

Now substitute the given values
So

Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
Answer: B, increase the rate at which he turns the crank
Explanation: i got it right
Answer:
Initial velocity will be 1.356 m/sec
Explanation:
Let the initial speed = u
Angle at which rubber band is launched = 37°
Horizontal component of initial velocity 
Time is given as t = 1.20 sec
Distance in horizontal direction = 1.30 m
We know that distance = speed × time
So time 


So initial velocity will be 1.356 m/sec
Answer:
See below
Explanation:
Distance = 27 + 13 = 40 km
Displacement = 27 - 13 = 14 km