Answer:
9,000, 100 has 7 significant figures
Explanation:
If two nonmetals are bonded together. So look at your periodic table of elements and decide if the two elements that are being bonded are nonmetals or not.
Hey there!:
HA <=> H⁺ + A⁻
pH = -log[H+] = 6
[ H⁺ ] = 10^-pH
[ H⁺] = 10 ^ -6
[ H⁺ ] = 0.000001 M
Percent dissociation:
[ H⁺ ] / [ HA]o * 100
[ 0.000001 / 0.10 ] * 100
0.00001 * 100 => 0.0010%
Answer D
Hope that helps!
Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
Answer:
The pressure of O₂ is 0.8 atm.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
PT = PA + PB
This relationship is due to the assumption that there are no attractive forces between the gases.
In this case:
PT=Pnitrogen + Pcarbon dioxide + Pother gases
Being:
- Pnitrogen: 593.4 mmHg
- Pcarbon dioxide: 3 mmHg
- Pother gases: 7.1 mmHg
and replacing:
PT= 593.4 mmHg + 3 mmHg + 7.1 mmHg
you get:
PT= 603.5 mmHg
Being 760 mmHg= 1 atm, you get:
PT= 603.5 mmHg= 0.8 atm
<u><em>The pressure of O₂ is 0.8 atm.</em></u>