Answer:
H⁺(aq) + H₂O(l) ⇄ H₃O⁺(aq)
Explanation:
According to Brönsted-Lowry acid-base theory, an acid is a substance that donates H⁺. Let's consider the molecular equation showing that benzoic acid is a Brönsted-Lowry acid.
C₆H₅COOH(aq) + H₂O(l) ⇄ C₆H₅COO⁻(aq) + H₃O⁺(aq)
The complete ionic equation includes all the ions and molecular species.
C₆H₅COO⁻(aq) + H⁺(aq) + H₂O(l) ⇄ C₆H₅COO⁻(aq) + H₃O⁺(aq)
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
H⁺(aq) + H₂O(l) ⇄ H₃O⁺(aq)
<span>
You can do it on the icing of roads, reverse osmosis for desalination of water, dissolved CO2 in soda cans, osmotic pressure involving blood vessels and IV solutions, etc.</span>
Answer:
Here,
0.01040 m as an integer= 1.04 × 10-2
Answer:
K = 10
Explanation:
Using Hess's law, it is possible to obtain the equilibrium constant, K, of a reaction using K of similar reactions. For example:
<em> If A ⇄ B K = X</em>
B ⇄ A K = 1/X
2A ⇄ 2B K = X².
Thus, if A(g) ⇄ 2B(g) K = 0.010
2B(g) ⇄ A(g) K = 1 / 0.010; K = 100
B(g) ⇄ A(g) K = √100 = 10
<h3>K = 10</h3>
Answer:
Number of moles = 0.94 mol
Explanation:
Given data:
Number of moles of sodium chloride = ?
Volume of sodium chloride = 1.25 L
Concentration of solution = 0.750 mol/L
Solution:
Formula:
Concentration = number of moles/ volume in L
By putting values.
0.750 mol/L = number of mole / 1.25 L
Number of moles = 0.750 mol/L×1.25 L
Number of moles = 0.94 mol