The solution for this problem is:
For 1st minimum, let m be equal to 1.
d = slit width
D = screen distance.
Θ = arcsin (m * lambda/ (d))
= 0.13934 rad, 7.9836 deg
y = D*tan (Θ)
y = 6.50 * tan (7.9836)
= 0.91161 m is the distance from the central maximum to the first-order minimum
Answer:
Radiant energy
Explanation:
Radiant energy is energy that travels by waves or particles, particularly electromagnetic radiation such as heat or x-rays.
Answer:
Yes, it's correct
Explanation:
Newton's second Law states that the acceleration of an object is proportional to the net force applied on it, according to the equation:

where
F is the net force on the object
m is the mass of the object
a is the acceleration of the object
We can re-arrange the previous equation in order to solve explicitely for a, the acceleration, and we find:

So, we see that the acceleration is proportional to the net force and inversely proportional to the mass of the object.
Answer:
The way that the flask is built it has 3 protective layers.... the inside layer to keep the heat in, the outside layer to reflective the cold, and a vacuum layer, which is an empty layer that limits conduction and convection
Explanation:
Answer: (a) The magnitude of its temperature change in degrees Celsius is
.
(b) The magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.
Explanation:
(a) Expression for change in temperature is as follows.

= 15.1 K
= 
= 
= 
Therefore, the magnitude of its temperature change in degrees Celsius is
.
(b) Change in temperature from Celsius to Fahrenheit is as follows.
F = 1.8C + 32
C = 
Since, K = C + 273
or, 

= 1.8 (15.1)
= 
or, = 
Thus, we can conclude that the magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.