Answer: 13,333 snowflakes
Step-by-step explanation:
For this exercise let be "x" represents the number of snowflakes that will be in the fort.
According to the information given in the exercise, the weight of one block is 1 kilogram. Knowing that the fort must have 40 blocks, the total weight is:

Since each snowflake weighs
grams, need to divide the total weight calculated above by the weight of a snowfake.
Therefore, through this procedure you get the following result:

Therefore, the there will be 13,333 snowflakes in the fort.
5∛x + 4 = 44
5∛x = 40
∛x = 8
x = 8^3
x = 512
answer
C. 512
Subtract 9 from both sides
Plug in what ever value is the function of g for x and solve:
g(3) = |3-3| = |0| = 0
g(-3) = |(-3)-3| = |(-6)| = 6
Hope this helps :)
Hello, please consider the following.
![\displaystyle \begin{aligned} \int\limits^x {5sin(5t)sin(t)} \, dt &= -\int\limits^x {5sin(5t)} \, d(cos(t))\\ \\&=-[5sin(5t)cos(t)]+ \int\limits^x {25cos(5t)cos(t)} \, dt\\\\&=-5sin(5x)cos(x)+ \int\limits^x {25cos(5t)} \, d(sin(t))\\ \\&=-5sin(5x)cos(x)+[25cos(5t)sin(t)]+ \int\limits^x {25sin(5t)sin(t)} \, dt\\\\&=-5sin(5x)cos(x)+25cos(5x)sin(x)+ \int\limits^x {(25*5)sin(5t)sin(t)} \, dt\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%5Cint%5Climits%5Ex%20%7B5sin%285t%29sin%28t%29%7D%20%5C%2C%20dt%20%26%3D%20-%5Cint%5Climits%5Ex%20%7B5sin%285t%29%7D%20%5C%2C%20d%28cos%28t%29%29%5C%5C%20%5C%5C%26%3D-%5B5sin%285t%29cos%28t%29%5D%2B%20%5Cint%5Climits%5Ex%20%7B25cos%285t%29cos%28t%29%7D%20%5C%2C%20dt%5C%5C%5C%5C%26%3D-5sin%285x%29cos%28x%29%2B%20%5Cint%5Climits%5Ex%20%7B25cos%285t%29%7D%20%5C%2C%20d%28sin%28t%29%29%5C%5C%20%5C%5C%26%3D-5sin%285x%29cos%28x%29%2B%5B25cos%285t%29sin%28t%29%5D%2B%20%5Cint%5Climits%5Ex%20%7B25sin%285t%29sin%28t%29%7D%20%5C%2C%20dt%5C%5C%5C%5C%26%3D-5sin%285x%29cos%28x%29%2B25cos%285x%29sin%28x%29%2B%20%5Cint%5Climits%5Ex%20%7B%2825%2A5%29sin%285t%29sin%28t%29%7D%20%5C%2C%20dt%5Cend%7Baligned%7D)
And we can recognise the same integral, so.

And then,

Thanks