When a problem says a rigid vessel, it means that volume is constant. At constant V, pressure and temperature are indirectly proportional. We calculate as follows:
P1/T1 = P2/T2
P1/P2 = T1/T2
P1/P2 = 273.15 / 272.15
P1/P2 = 1.00
Hope this helps. Have a nice day.
Answer:
1.696 nm
Explanation:
For a diffraction grating, dsinθ = mλ where d = number of lines per metre of grating = 5510 lines per cm = 551000 lines per metre and λ = wavelength of light = 467 nm = 467 × 10⁻⁹ m. For a principal maximum, m = 1. So,
dsinθ = mλ = (1)λ = λ
dsinθ = λ
sinθ = λ/d.
Also tanθ = w/D where w = distance of center of screen to principal maximum and D = distance of grating to screen = 1.03 m
From trig ratios 1 + cot²θ = cosec²θ
1 + (1/tan²θ) = 1/(sin²θ)
substituting the values of sinθ and tanθ we have
1 + (D/w)² = (d/λ)²
(D/w)² = (d/λ)² - 1
(w/D)² = 1/[(d/λ)² - 1]
(w/D) = 1/√[(d/λ)² - 1]
w = D/√[(d/λ)² - 1] = 1.03 m/√[(551000/467 × 10⁻⁹ )² - 1] = 1.03 m/√[(1179.87 × 10⁹ )² - 1] = 1.03 m/1179.87 × 10⁹ = 0.000848 × 10⁻⁹ = 0.848 × 10⁻¹² m = 0.848 nm.
w is also the distance from the center to the other principal maximum on the other side.
So for both principal maxima to be on the screen, its minimum width must be 2w = 2 × 0.848 nm = 1.696 nm
So, the minimum width of the screen must be 1.696 nm
Answer:
Total time taken=110 seconds
Total distance traveled=480m
Explanation:
First of all, we find the total time taken:
For that, we use the formula : Distance/Speed= Time
Time for part 1 : 200/5=40 seconds
Time for part 2 : 280/4=70seconds
Total time taken=110 seconds
Total distance traveled=480m
Average Speed= 480/110=4.36 m/s
Total displacement=200-280=-80m (Since this is displacement, we need to find the distance between the initial and final point. Also, I've taken east direction as positive and west as negative)
Average Velocity=-80/110=-0.72 m/s
OR 0.72m/s towards west.
Here given that x is inversely depends of y
so as we increase the value of y so due to inverse dependency it will decrease the value of x
So here we can also say that when x inversely depends on y
so the product of x and y will remain constant here
so here the graph should be like this that if we increase the quantity on x axis then it will decrease the other quantity on y axis
<u><em>So here best appropriate graph must be option A</em></u>