To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>
Responder:
Fy = 2474,8737
Fx = 2474,8737
Explicación:
Dado que :
Dado:
Fuerza, F = 3500 N
Ángulo formado con la horizontal, θ, = 45 °
Los componentes de una fuerza se pueden descomponer en componentes verticales y horizontales.
El componente vertical Fy; y
El componente horizontal Fx
Fy = Fuerza * sinθ
Fy = 3500 * sin45 °
Fy = 2474,8737
El componente horizontal:
Fx = Fuerza * cosθ
Fy = 3500 * cos45 °
Fy = 2474,8737
Answer:The term atomic number, conventionally denoted by the symbol Z, indicates number of protons present in the nucleus of an atom, which is also equal to the number of electrons in an uncharged atom. The number of neutrons is represented by the neutron number (N)
Explanation:
Answer: A.
As a diver rises, the pressure on their body decreases which allows the volume of the gas to decrease.
Explanation:
The problem is that a diver, experiences an increased pressure of water compresses nitrogen and more of it dissolves into the body. Just as there is a natural nitrogen saturation point at the surface, there are saturation points under water. Those depend on the depth, the type of body tissue involved, and also how long a diver is exposed to the extra pressure. The deeper a diver go, the more nitrogen the body absorbs.
The problem is getting rid of the nitrogen once you ascend again. As the pressure diminishes, nitrogen starts dissolving out of the tissues of the diver's body, a process called "off-gassing." That results in tiny nitrogen bubbles that then get carried to the lungs and breathed out. However, if there is too much nitrogen and/or it is released too quickly, small bubbles can combine to form larger bubbles, and those can do damage to the body, anything from minor discomforts all the way to major problems and even death.