Answer:
148.04 kJ/mol
Explanation:
Let's consider the following thermochemical equation.
NO(g) + 1/2 O₂(g) → NO₂(g) ΔH°rxn = -114.14 kJ/mol
We can find the standard enthalpy of formation (ΔH°f) of NO(g) using the following expression.
ΔH°rxn = 1 mol × ΔH°f(NO₂(g)) - 1 mol × ΔH°f(NO(g)) - 1/2 mol × ΔH°f(O₂(g))
ΔH°f(NO(g)) = 1 mol × ΔH°f(NO₂(g)) - ΔH°rxn - 1/2 mol × ΔH°f(O₂(g)) / 1 mol
ΔH°f(NO(g)) = 1 mol × 33.90 kJ/mol - (-114.14 kJ) - 1/2 mol × 0 kJ/mol / 1 mol
ΔH°f(NO(g)) = 148.04 kJ/mol
<h2>Answer:</h2>
B) endothermic reaction.
<h2>Explanation:</h2>
Melting of ice is endothermic because it is taking heat from the environment, feeling cold, because it requires energy to break the ice bonds. It's also why you feel cold when wet it takes energy to evaporate water. The ice absorbs the energy from the environment. Its internal potential energy increases, therefore, it's endothermic. It also increases the entropy of reaction.
Answer:
You not alone lolI'm also tryna figure out the answer
Molecular weight of m is 40g. Hence, name of element m is Calcium. which is represented by the symbol Ca.
Given,
Moles of metal M = 0.300 moles
weight of mF₂ formed =23.4g
we have to find the name of element m...
Now,
m + F₂ → mF₂
1 mole of m reacts with 1 mole of F₂ (or 2 molecule of flourine) to form 1 mole of mF₂
Hence,
0.300 moles of m reacts with 0.300 moles of F₂ to form 0.300 moles of mF₂.
Hence,
23.4 g = 0.300 moles of mf2
0.300 × 38g + 0.300 × m = 23.4 g
Hence
m = 40 g
So, molecular weight of m is 40g. Hence, name of element m is Calcium. which is represented by the symbol Ca.
Thus, from the above conclusion we can say that, name of element m is Calcium. which is represented by the symbol Ca.
Learn more about Calcium here:brainly.com/question/26636816
#SPJ4