Answer:
λ = 2.8 m
Explanation:
Given data:
Frequency of radio wave = 106.7 ×10⁶ Hz
Wavelength of radio wave = ?
Solution:
Formula:
Speed of wave = frequency × wavelength
speed of wave = 3×10⁸ m/s
by putting values,
3×10⁸ m/s = 106.7 ×10⁶ Hz × λ
Hz = s⁻¹
λ = 3×10⁸ m/s / 106.7 ×10⁶ Hz
λ = 3×10⁸ m/s / 106.7 ×10⁶ s⁻¹
λ = 0.028×10² m
λ = 2.8 m
Molarity=moles/litre
molarity=0.5/0.1
molarity=5.00m
The are made from star stuffs...
Galaxies are composed of stars, dust, and dark matter, all held together by gravity. Below we discuss galaxy formation, galactic collisions and other facts about these so-called “island universes.” The Milky Way Galaxy is organized into spiral arms of giant stars that illuminate interstellar gas and dust.
Hope that helps........ (◕‿◕✿)
Answer:
41 g
Explanation:
We have a buffer formed by a weak acid (C₆H₅COOH) and its conjugate base (C₆H₅COO⁻ coming from NaC₆H₅COO). We can find the concentration of C₆H₅COO⁻ (and therefore of NaC₆H₅COO) using the Henderson-Hasselbach equation.
pH = pKa + log [C₆H₅COO⁻]/[C₆H₅COOH]
pH - pKa = log [C₆H₅COO⁻] - log [C₆H₅COOH]
log [C₆H₅COO⁻] = pH - pKa + log [C₆H₅COOH]
log [C₆H₅COO⁻] = 3.87 - (-log 6.5 × 10⁻⁵) + log 0.40
[C₆H₅COO⁻] = [NaC₆H₅COO] = 0.19 M
We can find the mass of NaC₆H₅COO using the following expression.
M = mass NaC₆H₅COO / molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = M × molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = 0.19 mol/L × 144.1032 g/mol × 1.5 L
mass NaC₆H₅COO = 41 g