Answer: As temperature increases, the number of collisions increases and the energy of the collisions increases.
Explanation:
According to collision theory, for a reaction to take place it is necessary to have collisions between the reacting species or atoms.
A collision will only be effective if species coming together have a certain minimum value of internal energy equal to the activation energy of the reaction.
More is the number of collisions taking place in a chemical reaction more will be the kinetic energy of its molecules. As kinetic energy is the energy acquired due to motion of atoms or a substance.
Also, collisions increases with increase in temperature as:

Kinetic energy is directly proportional to temperature. So, more is the temperature more will be energy of molecules.
Thus, we can conclude that as temperature increases, the number of collisions increases and the energy of the collisions increases.
Answer:
(a) -49.9 kJ/mol;
(b) To the right;
(c) 34.6 kJ/mol
Explanation:
(a) For this reaction, since it's at equilibrium and standard states, we know that we can apply the equation:

Substituting the given variables:

(b) Notice that this reaction is spontaneous, since
. This means reaction spontaneously proceeds to the right side. Besides, K > 1, this means products dominate over reactants, so reaction proceeds to the right.
(c) Given the expression of the formation constant, we can use the same expression to calculate the reaction quotient at non-standard conditions:
![Q_f = \frac{[Ni(NH_3)_6]^{2+}}{[Ni^{2+}][NH_3]^6} = \frac{0.010}{0.0010\cdot 0.0050^6} = 6.4\cdot 10^{14}](https://tex.z-dn.net/?f=Q_f%20%3D%20%5Cfrac%7B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%7D%7B%5BNi%5E%7B2%2B%7D%5D%5BNH_3%5D%5E6%7D%20%3D%20%5Cfrac%7B0.010%7D%7B0.0010%5Ccdot%200.0050%5E6%7D%20%3D%206.4%5Ccdot%2010%5E%7B14%7D)
Now, notice that
. In this case, we have an excess of the products, this means reaction will shift to the let left to restore the equilibrium.
Calculate:

<span>There are 2 carbon atoms in ethanoic acid. Other name of such substance is acetic acid. It is a colorless liquid carboxylic acid with the chemical formula CH3COOH. It has antibacterial and antifungal properties.</span>
Answer:
14.77 mol.
Explanation:
- It is known that every 1.0 mole of compound or element contains Avogadro's number (6.022 x 10²³) of molecules or atoms.
<u><em>Using cross multiplication:</em></u>
1.0 mole of He contains → 6.022 x 10²³ atoms.
??? mole of He contains → 8.84 x 10²⁴ atoms.
<em>∴ The no. of moles of He contains (8.84 x 10²⁴ atoms) </em>= (1.0 mol)(8.84 x 10²⁴ atoms)/(6.022 x 10²³ atoms) =<em> 14.77 mol.</em>
Answer:
ΔG° = -533.64 kJ
Explanation:
Let's consider the following reaction.
Hg₂Cl₂(s) ⇄ Hg₂²⁺(aq) + 2 Cl⁻(aq)
The standard Gibbs free energy (ΔG°) can be calculated using the following expression:
ΔG° = ∑np × ΔG°f(products) - ∑nr × ΔG°f(reactants)
where,
ni are the moles of reactants and products
ΔG°f(i) are the standard Gibbs free energies of formation of reactants and products
ΔG° = 1 mol × ΔG°f(Hg₂²⁺) + 2 mol × ΔG°f(Cl⁻) - 1 mol × ΔG°f(Hg₂Cl₂)
ΔG° = 1 mol × 148.85 kJ/mol + 2 mol × (-182.43 kJ/mol) - 1 mol × (-317.63 kJ/mol)
ΔG° = -533.64 kJ