Explanation:
The given data is as follows.
Temperature of metal =
= (296 + 273) K
= 569 K
Density of the metal = 8.85
=
(as
)
Atomic mass = 51.40 g/mol
Vacancies = 
Formula to calculate the number of atomic sites is as follows.
n = 
= 
= 
Now, we will calculate the energy as follows.
E = 
where, K = 
E = 
= 
Therefore, we can conclude that energy (in eV/atom) for vacancy formation in given metal, M, is
.
Answer:
im 99% sure its initial disturbance
Explanation:
Dark moths because they use their color to blend in with the trees to hide from birds
Answer:
3.8 secs
Explanation:
Parameters given:
Acceleration due to gravity, g = 9.8 
Initial velocity, u = 11.76 m/s
Final velocity, v = 49 m/s
Using one of Newton's equations of linear motion, we have that:

where t = time of flight of arrow
The sign is positive because the arrow is moving downward, in the same direction as gravitational force.
Therefore:

The arrow was in flight for 3.8 secs
The speed of the spring when it is released is 3.5 m/s.
The given parameters:
- <em>Mass of the block, m = 2.5 kg</em>
- <em>Spring constant, k = 56 N/m</em>
- <em>Extension of the spring, x = 0.75 m</em>
The speed of the spring when it is released is calculated by applying the principle of conservation of energy as follows;

Thus, the speed of the spring when it is released is 3.5 m/s.
Learn more about conservation of energy here: brainly.com/question/166559