Answer:
This question is solved in detail below. Please refer to the attachment for better understanding of an Ellipse.
Step-by-step explanation:
In this question, there is a spelling mistake. This is vertices not verticles.
So, I have attached a diagram of an ellipse in which it is clearly mentioned where are the vertices of an ellipse.
Vertices of an Ellipse: There are two axes in any ellipse, one is called major axis and other is called minor axis. Where, minor is the shorter axis and major axis is the longer one. The places or points where major axis and minor axis ends are called the vertices of an ellipse. Please refer to the attachment for further clarification.
Equations of an ellipse in its standard form:
This is the case when major axis the longer one is on the x-axis centered at an origin.

This is the case when major axis the longer one is on the y-axis centered at an origin.
where major axis length = 2a
and minor axis length = 2b
Answer:
Maybe add or Multply every surface then add the surfaces then get your answer
Step-by-step explanation:
Maybe pay attention next time.
The error is that 9 shouldnt be written as nine it should be written as 3x3 or 3^2. So the answer should be 2^3 x 3^2 because 9 can be divided into even more prime factors of 72.
Answer:
The requirements that are necessary for a normal probability distribution to be a standard normal probability distribution are <em>µ</em> = 0 and <em>σ</em> = 1.
Step-by-step explanation:
A normal-distribution is an accurate symmetric-distribution of experimental data-values.
If we create a histogram on data-values that are normally distributed, the figure of columns form a symmetrical bell shape.
If X
N (µ, σ²), then
, is a standard normal variate with mean, E (Z) = 0 and Var (Z) = 1. That is, Z
N (0, 1).
The distribution of these z-variates is known as the standard normal distribution.
Thus, the requirements that are necessary for a normal probability distribution to be a standard normal probability distribution are <em>µ</em> = 0 and <em>σ</em> = 1.