Answer:
The specific heat of iron is 0.45 J/g.°C
Explanation:
The amount of heat absorbed by the metal is given by:
heat = m x Sh x ΔT
From the data, we have:
heat = 180.8 J
mass = m = 22.44 g
ΔT = Final temperature - Initial temperature = 39.0°C - 21.1 °C = 17.9°C
Thus, we calculate the specific heat of iron (Sh) as follows:
Sh = heat/(m x ΔT) = (180.8 J)/(22.44 g x 17.9°C) = 0.45 J/g.°C
The answer is true, particles in the gaseous state are the furthest apart
Water is produce bases and says
Answer:
Boron
Explanation:
You can find this by looking at the number of protons in Boron, 5.
Then calculate how many electrons you are given, in this case the 2 core plus the 3 valence equal 5 total electrons
Neutral elements have the same number of protons and electrons, so your answer would be the element with 5 electrons, Boron.
You can also know this by using electron configuration. Since you kow there are 5 electrons then you can use EC to find out where your element is. In this case it is: 1s2 2s2 2p1