Answer:
a. 130.73 atm
b. 102.62 atm
c. 87.1 atm
Explanation:
See the attached pictures.
Answer:
6.5 × 10¹⁵/ cm³
Explanation:
Thinking process:
The relation 
With the expression Ef - Ei = 0.36 × 1.6 × 10⁻¹⁹
and ni = 1.5 × 10¹⁰
Temperature, T = 300 K
K = 1.38 × 10⁻²³
This generates N₀ = 1.654 × 10¹⁶ per cube
Now, there are 10¹⁶ per cubic centimeter
Hence, 
Answer:
The speed of the sound for the adiabatic gas is 313 m/s
Explanation:
For adiabatic state gas, the speed of the sound c is calculated by the following expression:
Where R is the gas's particular constant defined in terms of Cp and Cv:
For particular values given:
The gamma undimensional constant is also expressed as a function of Cv and Cp:
And the variable T is the temperature in Kelvin. Thus for the known temperature:
The Jules unit can expressing by:
Replacing the new units for the speed of the sound:

This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs