1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helga [31]
1 year ago
12

On a day in which the local atmospheric pressure is 99.5 kPa, answer each of the following: (a) Calculate the column height of m

ercury in a mercury barometer in units of meters, feet, and inches. (b) Francis is concerned about mercury poisoning, so he builds a water barometer to replace the mercury barometer. Calculate the column height of water in the water barometer in units of meters, feet, and inches. (c) Explain why a water barometer is not very practical. (d) Ignoring the practicality issue, which of the two (mercury or water) would be more precise
Engineering
1 answer:
horrorfan [7]1 year ago
8 0

Answer:

C . . . . . . . . . . . . . . . . . . . . . .

You might be interested in
Tech a says that the weight of the flywheel smoothest out the engines power pulses. Tech B says that the flexplate and torque co
lakkis [162]

Answer:

both statement is correct

Explanation:

Flywheel engine uses to reduce fluctuations.

And                                                                

FlexPlate is a metal disk that connects the output from the engine to the input of the torque converter. This will replace the flywheel

so that both statement is correct

4 0
3 years ago
Provide one example of a bad collision, and suggest an engineering solution to avoid the collision.
JulsSmile [24]

Answer:

1). Keep your distance. Drive far enough behind the car in front of you so you can stop safely. ...

Drive strategically. Avoid situations that could force you to suddenly use your brakes. ...

Don't get distracted. ...

Don't drive when drowsy or under the influence.

2). By far the deadliest accident type is the head-on collision. Head-on collisions consider both vehicle's speed at the time of the crash, which means even an accident at lower speeds can be catastrophic

Explanation:

first is how to avoid the collision and second is bad collision

7 0
2 years ago
A hot air balloon is used as an air-vehicle to carry passengers. It is assumed that this balloon is sealed and has a spherical s
monitta

Answer:

a. \dfrac{D_{1}}{ D_{2}}  =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n} which is constant therefore, n = constant

b. The temperature at the end of the process is 109.6°C

c. The work done by the balloon boundaries = 10.81 MJ

The work done on the surrounding atmospheric air = 10.6 MJ

Explanation:

p₁ = 100 kPa

T₁ = 27°C

D₁ = 10 m

v₂ = 1.2 × v₁

p ∝ α·D

α = Constant

v_1 = \dfrac{4}{3} \times  \pi \times r^3

\therefore v_1 = \dfrac{4}{3} \times  \pi \times  \left (\dfrac{10}{2}  \right )^3 = 523.6 \ m^3

v₂ = 1.2 × v₁ = 1.2 × 523.6 = 628.32 m³

Therefore, D₂ = 10.63 m

We check the following relation for a polytropic process;

\dfrac{p_{1}}{p_{2}} = \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} = \left (\dfrac{T_{1}}{T_{2}}   \right )^{\dfrac{n}{n-1}}

We have;

\dfrac{\alpha \times D_{1}}{\alpha \times D_{2}} = \left (\dfrac{ \dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_2}{2}  \right )^3}{\dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_1}{2}  \right )^3}   \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

\dfrac{D_{1}}{ D_{2}} = \left (\dfrac{   \left{D_2}  }{ {D_1}}   \right )^{3\times n} =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n}

\dfrac{ D_{1}}{ D_{2}} = \left ( 1.2  \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

log  \left (\dfrac{D_{1}}{ D_{2}}\right )  =  -3\times n \times log\left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )

n = -1/3

Therefore, the relation, pVⁿ = Constant

b. The temperature T₂ is found as follows;

\left (\dfrac{628.32 }{523.6}   \right )^{-\dfrac{1}{3} } = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{-\dfrac{1}{3}}{-\dfrac{1}{3}-1}} = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{1}{4}}

T₂ = 300.15/0.784 = 382.75 K = 109.6°C

c. W_{pdv} = \dfrac{p_1 \times v_1 -p_2 \times v_2 }{n-1}

p_2 = \dfrac{p_{1}}{ \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} } =  \dfrac{100\times 10^3}{ \left (1.2) \right  ^{-\dfrac{1}{3} } }

p₂ =  100000/0.941 = 106.265 kPa

W_{pdv} = \dfrac{100 \times 10^3 \times 523.6 -106.265 \times 10^3  \times 628.32 }{-\dfrac{1}{3} -1} = 10806697.1433 \ J

The work done by the balloon boundaries = 10.81 MJ

Work done against atmospheric pressure, Pₐ, is given by the relation;

Pₐ × (V₂ - V₁) = 1.01×10⁵×(628.32 - 523.6) = 10576695.3 J

The work done on the surrounding atmospheric air = 10.6 MJ

4 0
3 years ago
A train starts from rest at station A and accelerates at 0.6 m/s^2 for 60 s. Afterwards it travels with a constant velocity for
Aleks [24]

Answer:

The distance between the station A and B will be:

x_{A-B}=55.620\: km  

Explanation:

Let's find the distance that the train traveled during 60 seconds.

x_{1}=x_{0}+v_{0}t+0.5at^{2}

We know that starts from rest (v(0)=0) and the acceleration is 0.6 m/s², so the distance will be:

x_{1}=\frac{1}{2}(0.6)(60)^{2}

x_{1}=1080\: m

Now, we need to find the distance after 25 min at a constant speed. To get it, we need to find the speed at the end of the first distance.

v_{1}=v_{0}+at

v_{1}=(0.6)(60)=36\: m/s

Then the second distance will be:

x_{2}=v_{1}*1500

x_{2}=(36)(1500)=54000\: m        

The final distance is calculated whit the decelerate value:

v_{f}^{2}=v_{1}^{2}-2ax_{3}

The final velocity is zero because it rests at station B. The initial velocity will be v(1).

0=36^{2}-2(1.2)x_{3}

x_{3}=\frac{36^{2}}{2(1.2)}  

x_{3}=540\: m

Therefore, the distance between the station A and B will be:

x_{A-B}=x_{1}+x_{2}+x_{3}  

x_{A-B}=1080+54000+540=55.620\: km  

I hope it helps you!

 

7 0
2 years ago
What does the branch of physics include
cricket20 [7]

Answer:

The branches of physics are;

  • Classical physics
  • Modern physics
  • Nuclear physics
  • Atomic physics
  • Geophysics
  • Biophysics

Explanation:

Physics is a branch of science that studies nature, properties of matter and energy. The subjects in study are; mechanics, light, heat, light, sound, electricity, properties of atoms and magnetism.

The common branches are;

  • Thermodynamics which that studies heat, how it is transferred and effects
  • Sound that studies production, properties and application of sound waves
  • Light that deals with properties,pysical aspects and objects that utilize light
  • Electricity and magnetism that studies charges, their effects and relation with magnetism
  • Classical physics that studies laws of motion and gravity
  • Modern physics that study theory of relativity and quantum mechanics
4 0
2 years ago
Other questions:
  • What should the resistance value be on a size 5 motor starter coil
    14·1 answer
  • Stainless steel ball bearings (rho = 8085 kg/m3 and cp = 0.480 kJ/kg·°C) having a diameter of 1.2 cm are to be quenched in water
    10·2 answers
  • Block B starts from rest and moves downward with a constant acceleration. Knowing that after slider block A has moved 400 mm its
    13·1 answer
  • A power of 100 kW (105 W) is delivered to the other side of a city by a pair of power lines, between which the voltage is 12,000
    9·1 answer
  • The development of various technologies led to many historic events. Use information from the Internet to describe one major his
    5·1 answer
  • Give me an A please!!!¡!!!!¡
    5·1 answer
  • Q-) please give me a reference about Tack coat? Pleae i need it please??!!
    14·1 answer
  • A company purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate
    5·1 answer
  • Which of the following is an example of a pulley?
    10·2 answers
  • An astronomer of 65 kg of mass hikes from the beach to the observatory atop the mountain in Mauna Kea, Hawaii (altitude of 4205
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!