Answer:
note:
<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>
Answer:
La probabilidad pedida es 
Explanation:
Sabemos que la probabilidad de que un nuevo producto tenga éxito es de 0.85. Sabemos también que se eligen 10 personas al azar y se les pregunta si comprarían el nuevo producto. Para responder a la pregunta, primero definiremos la siguiente variable aleatoria :
'' Número de personas que adquirirán el nuevo producto de 10 personas a las que se les preguntó ''
Ahora bien, si suponemos que la probabilidad de que el nuevo producto tenga éxito se mantiene constante
y además suponemos que hay independencia entre cada una de las personas al azar a las que se les preguntó ⇒ Podemos modelar a
como una variable aleatoria Binomial. Esto se escribe :
~
en donde
es el número de personas entrevistadas y
es la probabilidad de éxito (una persona adquiriendo el producto) en cada caso.
Utilizando los datos ⇒
~ 
La función de probabilidad de la variable aleatoria binomial es :
con 
Si reemplazamos los datos de la pregunta en la función de probabilidad obtenemos :
con 
Nos piden la probabilidad de que por lo menos 8 personas adquieran el nuevo producto, esto es :

Calculando
y
por separado y sumando, obtenemos que 
Answer:
Explanation:
% Clears variables and screen
clear; clc
% Asks user for input
n = input('Total number of objects: ');
r = input('Size of subgroup: ');
% Computes and displays permutation according to basic formulas
p = 1;
for i = n - r + 1 : n
p = p*i;
end
str1 = [num2str(p) ' permutations'];
disp(str1)
% Computes and displays combinations according to basic formulas
str2 = [num2str(p/factorial(r)) ' combinations'];
disp(str2)
=================================================================================
Example: check
How many permutations and combinations can be made of the 15 alphabets, taking four at a time?
The answer is:
32760 permutations
1365 combinations
==================================================================================
Answer:
as soon as there is a design to improve
Explanation:
As a design engineer, I started on the "design improvement" step as soon as I had an initial conceptual design.
__
Then, I started that step again when my boss told me, "make it better."
_____
The more interesting question is, "when do you <em>stop</em> the design improvement step?" (Judging by the constant barrage of software updates, that answer is, "never.")
Answer:
The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.
Explanation:
For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.
Q = π(ΔPR⁴/8μL)
where Q = volumetric flowrate
ΔP = Pressure drop across the pipe
μ = fluid viscosity
L = pipe length
If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe
ΔP = μ(8QL/πR⁴)
ΔP = Kμ
K = (8QL/πR⁴) = constant (for this question)
ΔP = Kμ
K = (ΔP/μ)
So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).
μ₁ = (μ/2)
The new pressure drop (ΔP₁) is then
ΔP₁ = Kμ₁ = K(μ/2)
Recall,
K = (ΔP/μ)
ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)
Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.
Hope this Helps!!!