Answer: The answer is A. The company is trying to transfer intellectual capital to a knowledge management system
Answer:
def output_ints_less_than_or_equal_to_threshold(user_values, upper_threshold):
for value in user_values:
if value < upper_threshold:
print(value)
def get_user_values():
n = int(input())
lst = []
for i in range(n):
lst.append(int(input()))
return lst
if __name__ == '__main__':
userValues = get_user_values()
upperThreshold = int(input())
output_ints_less_than_or_equal_to_threshold(userValues, upperThreshold)
Answer:
Option E
Explanation:
All the given statements are true except the velocity gradients normal to the flow direction are small since these are not normally small. It's true that viscous effects are present only inside the boundary layer and the fluid velocity equals the free stream velocity at the edge of the boundary layer. Moreover, Reynolds number is greater than unity and the fluid velocity is zero at the surface of the object.
Answer:
0.5m^2/Vs and 0.14m^2/Vs
Explanation:
To calculate the mobility of electron and mobility of hole for gallium antimonide we have,
(S)
Where
e= charge of electron
n= number of electrons
p= number of holes
mobility of electron
mobility of holes
electrical conductivity
Making the substitution in (S)
Mobility of electron


Mobility of hole in (S)


Then, solving the equation:
(1)
(2)
We have,
Mobility of electron 
Mobility of hole is 