Answer:
Explanation:
There will be loss of potential energy due to loss of height and gain of kinetic energy .
loss of height = R - R cos 14 , R is radius of hemisphere .
R ( 1 - cos 12 )
= 13 ( 1 - .978 )
h = .286 m
loss of potential energy
= mgh
= m x 9.8 x .286
= 2.8 m
gain of kinetic energy
1/2 m v ² = mgh
v² = 2 g h
v² = 2 x 9.8 x 2.8
v = 7.40 m /s
Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
Answer:
The pressure will be transmitted equally to all other parts of the confined fluid causing a general increase in pressure throughout the container.
Explanation:
This is in line with pascal's law of pressure which states that the pressure exerted on a given mass of fluid is transmitted undiminished to other parts of the fluid.
Answer:
It may be combine?
Do you have multiple choice i can see?
Explanation: