Answer:
(a) 0.0171 V
Explanation:
A = 0.09 m^2, dB/dt = 0.190 T/s
(a) According to the law of electromagntic induction
e = dФ / dt
e = A dB / dt
e = 0.09 x 0.190 = 0.0171 V
(b)
as we know
i = e / R
we can find induced current by dividing induced emf by resistance
The answer is C the temp of water in both beakers will decrease since the metal is flowing heat into the water. Therefore we can say the metal losses heat and the water gains the heat lost by the metal minus any heat loss to surroundings! Hope this explanation helps you understand the concept! Please rate if I helped you! Thank you so much!
Answer:
Assessment zone
Explanation:
It is the assessment zone in various security zones where active and passive security measures are employed to identify, detect, classify and analyze possible threats inside the assessment zones.
Answer:
The convection process plays an important role in the liquid. Due to the increasing heat supply or high amount of temperature, the fluid gets heated up, as a result of which it becomes warm, less dense and eventually rises up forming convection cells.
In the interior of the earth, the hot molten rocks get heated up due to the heat supplied by the core of the earth. This makes the magma warm and less dense and rises upward forming convection currents in the mantle.
This convection process is similar to the convection cells that form in the atmosphere, where the hot, less dense air rises up in the atmosphere forming a low-pressure zone. This uprising air forms convection cells, in which the warm air rises and as it rises high in the atmosphere, the temperature becomes low, making the air cold and it eventually sinks.
Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.