In an airplane equipped with fuel pumps, the auxiliary electric fuel pump is used in the event the engine-driven fuel pump fails.. hope this helped !
Answer:
Gravitational force (pulled downward by the Earth)
Normal force (pushed upward by the ground)
Applied force (pushed by the person)
Friction force (pulled opposite the direction of motion by the roughness of the ground)
Answer:
I = 8.3 Amp
potential drop = 83 V
Explanation:
Power = 100 KW
V = 12,000 V
R = 10 ohms
a)
Calculate current I in each wire:
P = I*V
I = P / V
I = 100 / 12 = 8.333 A
b)
Calculate potential drop in each wire:
V = I*R
V = (8.3) * (10)
V = 83 V
Answer:
The volume flow rate necessary to keep the temperature of the ethanol in the pipe below its flashpoint should be greater than 1.574m^3/s
Explanation:
Q = MCp(T2 - T1)
Q (quantity of heat) = Power (P) × time (t)
Density (D) = Mass (M)/Volume (V)
M = DV
Therefore, Pt = DVCp(T2 - T1)
V/t (volume flow rate) = P/DCp(T2 - T1)
P = 20kW = 20×1000W = 20,000W, D(rho) = 789kg/m^3, Cp = 2.44J/kgK, T2 = 16.6°C = 16.6+273K = 289.6K, T1 = 10°C = 10+273K = 283K
Volume flow rate = 20,000/789×2.44(289.6-283) = 20,000/789×2.44×6.6 = 1.574m^3/s (this is the volume flow rate at the flashpoint temperature)
The volume flow rate necessary to keep the ethanol below its flashpoint temperature should be greater than 1.574m^3/s
Answer:
3.25 ft/s
Explanation:
The crate is of =14-lb=m₁
The angle of inclination is = 40°=Ф
The initial velocity = 0.4 ft/s= v₁
Distance the crate will move is= 0.3 ft =d
The load pulling downwards is = 36 lb= m₂
Acceleration of the pulley, a= m₂g - m₁gsinФ / m₁+m₂ where g= 32.17 ft/s^2
a= 36*32.17 - 14*32.17*sin 40° / 14+36
a=17.37 ft/s^2
Apply the formula for final velocity
V₂²=V₁²+2ad
V₂²=0.4²+ 2*17.37*0.3
V₂²=10.582
V₂ =√10.582 = 3.25 ft/s