Explanation:
Because when two equal forces are applied from opposite directions, they "eliminate" each other.
The train would go right if a 3N force was only applied in the right direction, and it would go left if the same force was only applied to the left.
If a 3N force was applied to the right and a 2N force to the left, it would equal a 1N force to the right (3-2=1).
But there it's 3-3=0, so in practice the force is 0N. Therefore the train won't move.
Answer: acid dissociation constant Ka= 2.00×10^-7
Explanation:
For the reaction
HA + H20. ----> H3O+ A-
Initially: C. 0. 0
After : C-Cx. Cx. Cx
Ka= [H3O+][A-]/[HA]
Ka= Cx × Cx/C-Cx
Ka= C²X²/C(1-x)
Ka= Cx²/1-x
Where x is degree of dissociation = 0.1% = 0.001 and c is the concentration =0.2
Ka= 0.2(0.001²)/(1-0.001)
Ka= 2.00×10^-7
Therefore the dissociation constant is
2.00×10^-7
There are 0.566 moles of carbonate in sodium carbonate.
<h3>CALCULATE MOLES:</h3>
- The number of moles of carbonate (CO3) in sodium carbonate (Na2CO3) can be calculated by dividing the mass of carbonate in the compound by the molar mass of the compound.
- no. of moles of CO3 = mass of CO3 ÷ molar mass of Na2CO3
- Molar mass of Na2CO3 = 23(2) + 12 + 16(3)
- = 46 + 12 + 48 = 106g/mol
- mass of CO3 = 12 + 48 = 60g
- no. of moles of CO3 = 60/106
- no. of moles of CO3 = 0.566mol
- Therefore, there are 0.566 moles of carbonate in sodium carbonate.
Learn more about number of moles at: brainly.com/question/1542846
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
I think the reaction that represents a balanced, double replacement chemical reaction is B which is <span>Rb2O + Cu(C2H3O2)2 → 2RbC2H3O2 + CuO </span>
I think is 6.588579795x10^13 Kg because the equation is E=mc^2 and E is your Joules and c^2= 9x10^16 so m=(c^2)/E