Answer:
The minimum value of the bill that is greater than 95% of the bills is $37.87.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What are the minimum value of the bill that is greater than 95% of the bills?
This is the 95th percentile, which is X when Z has a pvalue of 0.95. So X when Z = 1.645.




The minimum value of the bill that is greater than 95% of the bills is $37.87.
Answer:
₹66,000
Step-by-step explanation:
If 5/6 is 55,000 then just multiply 55,000 by the reciprocal 6/5 to get 66,000
Answer choice B is the correct answer the rest don't make sense.
Answer:
A=266CM
Step-by-step explanation:
p=2l + 2w l=2x+1 w=x+5
66=2[2x+1] + 2{x+5] l=2x9 + 1 w=9+5
66=4x+2 + 2x+10 l=18+1 w=14
66=6x+12 l=19
66-12=6x
54=6x A=L x W
x=9 A=19 x 14
A=266CM
The answer would be B-D-F