Answer:
My scenario would be A Car vs. a guard rail on a road. You have a car that is coming down a Highway at a speed of 43 Mph Miles per hour (69.2018 Kmh)
And it hits a steel guardrail and the car smashes in at the front and the guardrail is only bent while the car has the bumper and the hood along with the headlights and windshield along with the passenger side window break.
Explanation:
This is caused by so much force reacting from one object to another but also depends on molecular density.
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.
Answer:

Explanation:
= Strain = 0.49
= 3.1 MPa
At t = Time = 32 s
= 0.41 MPa
= Time-independent constant
Stress relation with time

at t = 32 s

The time independent constant is 16.0787 s

At t = 6

From the first equation



Answer:
The magnitude of the force is 12 N Upwards
Explanation:
The force on a positive charge will be in the same direction as the field, but the force on a negative charge will be in the opposite direction to the field. Thus the direction of the force is upward.
Given;
magnitude of charge, q = 0.06 C
magnitude of electric field, E = 200 N/C
The magnitude of the force is given by;
F = qE
F = 0.06 x 200 N/C
F = 12 N Upwards
Therefore, the magnitude of the force is 12 N Upwards