<span>It is possible to determine which cart to which ch is connected if the graph would show electrical charge, ie, amps or voltage. If the graph showed a series circuit diagram this would also allow determination. Bottom line is that a correct graph data will show the requested information.</span>
We are given a box that slides up a ramp. To determine the force of friction we will use the following relationship:

Where.

To determine the Normal force we will add the forces in the direction perpendicular to the ramp, we will call this direction the y-direction as shown in the following diagram:
In the diagram we have:

Adding the forces in the y-direction we get:

Since there is no movement in the y-direction the sum of forces must be equal to zero:

Now we solve for the normal force:

To determine the y-component of the weight we will use the trigonometric function cosine:

Now we multiply both sides by "mg":

Now we substitute this value in the expression for the normal force:

Now we substitute this in the expression for the friction force:

Now we substitute the given values:

Solving the operations:

Therefore, the force of friction is 15.01 Newtons.
Answer:
<u>For M84:</u>
M = 590.7 * 10³⁶ kg
<u>For M87:</u>
M = 2307.46 * 10³⁶ kg
Explanation:
1 parsec, pc = 3.08 * 10¹⁶ m
The equation of the orbit speed can be used to calculate the doppler velocity:

making m the subject of the formula in the equation above to calculate the mass of the black hole:
.............(1)
<u>For M84:</u>
r = 8 pc = 8 * 3.08 * 10¹⁶
r = 24.64 * 10¹⁶ m
v = 400 km/s = 4 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 590.7 * 10³⁶ kg
<u>For M87:</u>
r = 20 pc = 20 * 3.08 * 10¹⁶
r = 61.6* 10¹⁶ m
v = 500 km/s = 5 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 2307.46 * 10³⁶ kg
The mass of the black hole in the galaxies is measured using the doppler shift.
The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.
Density can be any number, as long as it has the right units.
A unit of density has to be (a unit of mass) divided by (a unit of volume).
The most common one is gram/cm^3.