Answer:
v = 1.4 m /s
Explanation:
We shall apply law of conservation of mechanical energy
The kinetic energy of dart and block is converted into potential energy of both dart and block .
1 /2 (m+M) v² = ( m +M) gH
.5 x v² = 9.8 x .1
= v² = 1.96
v = 1.4
v = 1.4 m /s
20/9.8 = 2.0 seconds. The ball stops after 2 seconds.
Answer:
c)
V_local = -x/t^2
V_convec = x/t^2
d)
a = V_local + V_convec = 0
e) When a particle moves towards postive x direction its convective velocity increases, but at the same time the local velocity deacreases (at the same rate) when time increases
Explanation:
Hi!
You can see plots for a) and b) attached on this document
c)
The local acceleration is just teh aprtial derivative of the velocity with respect to t:

And the convective acceleration is given by the product of the velocity times the gradient of the velocity, that is:

d)
Since the acceleration of any fluid particle is the sum of the local and convective accelerations, we can easily see that it is equal to zero, since they are equal but with opposit sign
e)
This is because of teh particular form of the velocity. A particle will move towards areas of higher velocities (convectice acceleration), but as time increases, the velocity is also decreasing (local acceleration), and the sum of these quantities adds up to zero
Answer:
(a) 23.946 kV
(b) -0.077 J
Explanation:
(a) The electric potential is given by the following formula:
(1)
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
q1 = q2 = 1.60*10^{-6}C
r1 and r2 are the distance from the charges to the point in which electric potential is evaluated.
Firs, you calculate the distance r1 and r2 by taking into account the position of the charges

Next, you replace the values of the parameters to calculate V:

(b) The potential electric energy is given by:
![U_T=U_{1,2}+U_{1,3}+U_{2,3}\\\\U_T=k\frac{q_1q_2}{r_{1,2}}+k\frac{q_1q_3}{r_{1,3}}+k\frac{q_2q_3}{r_{2,3}}\\\\r_{1,2}=2.00m\\\\r_{1,3}=1.20m\\\\r_{2,3}=1.20m\\\\U_T=(8.98*10^9)[\frac{(1.6*10^{-6})^2}{2.00m}+\frac{(1.6*10^{-6})(-3.70*10^{-6})}{1.20}+\frac{(1.6*10^{-6})(-3.70*10^{-6})}{1.20}]J\\\\U_T=-0.077J](https://tex.z-dn.net/?f=U_T%3DU_%7B1%2C2%7D%2BU_%7B1%2C3%7D%2BU_%7B2%2C3%7D%5C%5C%5C%5CU_T%3Dk%5Cfrac%7Bq_1q_2%7D%7Br_%7B1%2C2%7D%7D%2Bk%5Cfrac%7Bq_1q_3%7D%7Br_%7B1%2C3%7D%7D%2Bk%5Cfrac%7Bq_2q_3%7D%7Br_%7B2%2C3%7D%7D%5C%5C%5C%5Cr_%7B1%2C2%7D%3D2.00m%5C%5C%5C%5Cr_%7B1%2C3%7D%3D1.20m%5C%5C%5C%5Cr_%7B2%2C3%7D%3D1.20m%5C%5C%5C%5CU_T%3D%288.98%2A10%5E9%29%5B%5Cfrac%7B%281.6%2A10%5E%7B-6%7D%29%5E2%7D%7B2.00m%7D%2B%5Cfrac%7B%281.6%2A10%5E%7B-6%7D%29%28-3.70%2A10%5E%7B-6%7D%29%7D%7B1.20%7D%2B%5Cfrac%7B%281.6%2A10%5E%7B-6%7D%29%28-3.70%2A10%5E%7B-6%7D%29%7D%7B1.20%7D%5DJ%5C%5C%5C%5CU_T%3D-0.077J)