Answer:
N = 23.4 N
Explanation:
After reading that long sentence, let's solve the question
The contact force is the so-called normal in this case we can find it by writing the translational equilibrium equation for the y axis
N - w₁ -w₂ =
N = m₁ g + m₂ g
N = g (m₁ + m₂)
let's calculate
N = 9.8 (0.760 + 1.630)
N = 23.4 N
This is the force of the support of the two blocks on the surface.
No.
Since repeated measurements are taken and the average and 95% confidence interval are calculated, the possibility of the lack of agreement being a random error has been minimized or even eliminated.
<h3>What is a random error?</h3>
Random error is defined as the deviation of the total error from its mean value due to chance.
Random errors can result from the instrument not being precise or from mistakes by the researcher.
Random errors can be minimized by taking multiple readings and averaging the results.
Since repeated measurements are taken and the average and 95% confidence interval are calculated, the possibility of the lack of agreement being a ransom error has been minimized.
Learn more about random errors at: brainly.com/question/22041172
<span>The egg doesn't break when it hits the sheet because the impact time is longer. Momentum means the egg is slowed rather than coming to an abrubt halt. The softer the object that the egg hits, the longer the time it takes to break. A sheet is so soft that the force is never high enough for the egg to break.</span>
complete question:
A child bounces a 60 g superball on the sidewalk. The velocity change of the superball is from 22 m/s downward to 15 m/s upward. If the contact time with the sidewalk is 1/800 s, what is the magnitude of the average force exerted on the superball by the sidewalk
Answer:
F = 1776 N
Explanation:
mass of ball = 60 g = 0.06 kg
velocity of downward direction = 22 m/s = v1
velocity of upward direction = 15 m/s = v2
Δt = 1/800 = 0.00125 s
Linear momentum of a particle with mass and velocity is the product of the mass and it velocity.
p = mv
When a particle move freely and interact with another system within a period of time and again move freely like in this scenario it has a definite change in momentum. This change is defined as Impulse .
I = pf − pi = ∆p
F = ∆p/∆t = I/∆t
let the upward velocity be the positive
Δp = mv2 - m(-v1)
Δp = mv2 - m(-v1)
Δp = m (v2 + v1)
Δp = 0.06( 15 + 22)
Δp = 0.06(37)
Δp = 2.22 kg m/s
∆t = 0.00125
F = ∆p/∆t
F = 2.22/0.00125
F = 1776 N