1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
e-lub [12.9K]
3 years ago
8

A bungee jumper of mass 75kg is attached to a bungee cord of length L=35m. She walks off a platform (with no initial speed), reac

hes a height of 72m below the platform, and continues to oscillate. While air resistance eventually slows her to a stop, assume there is no air resistance for these calculations.
1. What is the spring constant of her bungee cord?
2. What is her speed when she is 35m below the platform (i.e., just before the cord starts to stretch)?
3. If she had instead jumped vertically off the platform, would the maximum displacement of the bungee cord increase, decrease, or stay the same?
Physics
1 answer:
attashe74 [19]3 years ago
5 0

Answer:

1. 77.31 N/m

2. 26.2 m/s

3. increase

Explanation:

1. According to the law of energy conservation, when she jumps from the bridge to the point of maximum stretch, her potential energy would be converted to elastics energy. Her kinetic energy at both of those points are 0 as speed at those points are 0.

Let g = 9.8 m/s2. And the point where the bungee ropes are stretched to maximum be ground 0 for potential energy. We have the following energy conservation equation

E_P = E_E

mgh = kx^2/2

where m = 75 kg is the mass of the jumper, h = 72 m is the vertical height from the jumping point to the lowest point, k (N/m) is the spring constant and x = 72 - 35 = 37 m is the length that the cord is stretched

75*9.8*72 = 37^2k/2

k = (75*9.8*72*2)/37^2 = 77.31 N/m

2. At 35 m below the platform, the cord isn't stretched, so there isn't any elastics energy, only potential energy converted to kinetics energy. This time let's use the 35m point as ground 0 for potential energy

mv^2/2 = mgH

where H = 35m this time due to the height difference between the jumping point and the point 35m below the platform

v^2/2 = gH

v = \sqrt{2gH} = \sqrt{2*9.8*35} = 26.2 m/s

3. If she jumps from her platform with a velocity, then her starting kinetic energy is no longer 0. The energy conservation equation would then be

E_P + E_k = E_E

So the elastics energy would increase, which would lengthen the maximum displacement of the cord

You might be interested in
A man runs 1200m on a straight line in 4 min . find his velocity.
luda_lava [24]

Answer:

5m/sec^2

Explanation:

Distance=1200m

Time=4 min

1=60sec

4=4 x 60

=240sec

Velocity=Distance/Time

Velocity=1200/240

Velocity=5m/sec^2

Mark me as brainliest

7 0
3 years ago
If an equation is dimensionally correct is thar equation a right equation<br>​
Nady [450]

If an equation is dimensionally correct, it does not mean that the equation must be true. On the other hand, when the equation is dimensionally correct, the equation cannot be true. Dimensional analysis is a technique used to check whether a relationship is correct

8 0
3 years ago
Can we use a clinical thermometer to measure the temperature of a candle flame​
miv72 [106K]

In theory, yes. The 2 problems are the materials used for clinical thermometers, & the temperature capacity of the clinical thermometer. If anything, change the material & extend the measurement threshold. At that point, it wouldn´t be used for clinical garbage anymore.

3 0
3 years ago
5. Emanuel Zacchini, the famous human cannonball of the Ringling Bros. and Barnum and Bailey Circus,
Strike441 [17]

Explanation:

सिद्ध कीजिए किसी भी बराबर भुजाओं वाले त्रिभुज में उनके सामने के कोण बराबर होते है

3 0
2 years ago
Name five characteristics of a star that can be determined by measuring its spectrum. Explain how you would use a spectrum to de
Ne4ueva [31]

Answer:

Chemical composition, Temperature, Radial velocity, Size or diameter of the star, Rotation.

Explanation:  

Elemental abundances are determined by analyzing the relative strengths of the absorption lines in the spectrum of a star.

The Spectral class to which the star belongs gives the information related to the temperature of the star. It is the spectral lines that determine the spectral class O B A F G K M are the spectral classes.

By measuring the wavelengths of the lines in the star's spectrum gives the radial velocity. Doppler shift is the method used to find the radial velocity.

A star can be classified as a giant or a dwarf . A giant star will have narrow width spectral lines whereas a dwarf star has wider spectral lines.

Broadening of the spectral lines will determine the star's rotation.

6 0
3 years ago
Other questions:
  • Gaseous helium is in thermal equilibrium with liquid helium at 6.4 K. The mass of a helium atom is 6.65 × 10−27 kg and Boltzmann
    8·1 answer
  • Waves with a higher frequency have a ______ wavelength and _____ energy. *
    7·1 answer
  • If the radius of the atom is the distance from point A to D, where is the MOST likely location of the LEAST concentration of mas
    12·1 answer
  • Serving at a speed of 164 km/h, a tennis player hits the ball at a height of 2.23 m and an angle θ below the horizontal. The ser
    5·1 answer
  • You have to heat up a 1.000 gram ingot of aluminum from initial temperature Ti = 847 K to its melting point, 933 K. Calculate th
    9·1 answer
  • A nerve signal travels 150 meters per second. Determine the number of kilometers that the nerve signal will travel in the same t
    7·1 answer
  • How can a river be used to produce electricity?
    13·1 answer
  • What type of force is Ft?
    13·2 answers
  • In downtown Chicago, the east-west blocks are 400 ft long while the north-south blocks are 280 ft long. Because of the many one-
    12·1 answer
  • PLZ HURRY
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!