1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
15

A car moving with an intial velocity of 60m/s is brought to rest in 30 seconds calculate the acceleration

Physics
1 answer:
gregori [183]3 years ago
6 0

Answer:

a = 2 [m/s^2]

Explanation:

To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.

v_{f} = v_{i} - (a*t)

where:

Vf = final velocity = 0

Vi = initial velocity = 60 [m/s]

a = desacceleration [m/s^2]

t = time = 30 [s]

Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.

0 = 60 - (a*30)

a = 2 [m/s^2]

You might be interested in
Over the last several decades scientists have considered the problem of nonrenewable natural resources, such as fossil fuels. Hu
sesenic [268]

The statement "Good locations for turbines are limited" describes a drawback to wind energy.

Answer: Option B

<u>Explanation:</u>

Wind energy is one of the most useful and efficient renewable energy sources. But nothing is ideal in this universe and the same thing applies for wind energy also. The generation of electricity from wind energy requires setting up of turbines.

And these turbines can be set up in plane areas which is free from any disturbance except wind flow. In open area and flat plane surface only the turbines can rotate freely with the effect of wind.

But regions where the wind flow is minimum due to snow formation like the northern region of earth, the turbines cannot be set up there. So the locations for setting up of turbines are limited for good outcome in wind energy. This is one of the drawback of wind energy.

8 0
3 years ago
State Schrodinger equation.​
Elenna [48]

Hi!Schrodinger equation is written as HΨ = EΨ, where h is said to be a Hamiltonian operator.

3 0
2 years ago
Help me please I can't get the final step​
inna [77]

Answer:

\displaystyle m=\frac{2}{3},\ n=\frac{4}{3}

Explanation:

<u>Dimensional Analysis</u>

It's given the relation between quantities A, B, and C as follows:

\displaystyle A=\frac{3}{2}B^mC^n

and the dimensions of each variable is:

A=L^2T^2

B=LT^{-1}

C=LT^2

Substituting the dimensions into the relation (the coefficient is not important in dimension analysis):

\displaystyle L^2T^2=\left(LT^{-1}\right)^m\left(LT^2\right)^n

Operating:

L^2T^2=\left(L^mT^{-m}\right)\left(L^nT^{2n}\right)

L^2T^2=L^{m+m}T^{-m+2n}

Equating the exponents:

m+n=2

-m+2n=2

Adding both equations:

3n=4

Solving:

n=4/3

m=2-4/3=2/3

Answer:

\mathbf{\displaystyle m=\frac{2}{3},\ n=\frac{4}{3}}

6 0
3 years ago
a car with a mass of 2000 kilograms is moving around a circular curve at a uniform velocity of 25 meters per second. The curve h
melisa1 [442]
In the given problem, we say various information's that are going to help us reach the ultimate answer to the question. Let us first write the information's that have been presented in front of us.
Mass of the car = 2000 kg
Velocity of the car = 25 m/s^2
Radius of the circle = 80 m
Now we already know the equation for calculating the centripetal force and that is
Centripetal Force = [mass * (velocity)^2]/Radius
                            = [2000 * (25)^2]/80
                            = (2000 * 625)/80
                            = 1250000/80
                            = 15625
So the centripetal force on the car is 15625 Newtons
  
4 0
3 years ago
Read 2 more answers
A spinning wheel is slowed down by a brake, giving it a constant angular acceleration of ?5.20 rad/s2. during a 3.80-s time inte
ddd [48]

<span>We can answer this using the rotational version of the kinematic equations:</span><span>
θ = θ₀ + ω₀<span>t + ½αt²     -----> 1</span></span>

ω² = ω₀² + 2αθ            -----> 2

Where:

θ = final angular displacement = 70.4 rad

θ₀ = initial angular displacement = 0

ω₀ = initial angular speed

ω = final angular speed

t = time = 3.80 s

α = angular acceleration = -5.20 rad/s^2

Substituting the values into equation 1:<span>
70.4 = 0 + ω₀(3.80) + ½(-5.20)(3.80)² </span><span>

ω₀ = (70.4 + 37.544) / 3.80 </span><span>

ω₀ = 28.406 rad/s </span><span>


Using equation 2:
ω² = (28.406)² + 2(-5.2)70.4 


ω = 8.65 rad/s 


</span>

5 0
3 years ago
Other questions:
  • Ocean waves pass through two small openings, 20.0 m apart, in a breakwater. You're in a boat 70.0 m from the breakwater and init
    13·1 answer
  • Potential energy and kinetic energy are forms of what kind of energy? 1. chemical 2. nuclear 3. electromagnetic 4. heat 5. mecha
    12·1 answer
  • Spymaster Paul, flying a constant 215km/h horizontally in a low-flying helicopter, want to drop secret documents into his contac
    13·1 answer
  • Which statement is true of a convex lens?
    11·2 answers
  • A sample of Bismuth-212 has a mass of 2.64 grams (g) after 121 seconds (s). What was the initial mass of the sample if Bismuth-2
    11·1 answer
  • 17. What are the two factors that can cause the volume of water in the ocean to change? A. Temperature and pressure B. Gravity a
    15·1 answer
  • From readong these two paragraph only the best description of Austin is that he is a ___ character
    10·2 answers
  • Air enters into the hollow propeller tube at A with a mass flow of 4 kg/s and exits at the ends B and C with a velocity of 400 m
    5·1 answer
  • How many sides does a square have will give brainliest
    10·2 answers
  • Nvm I dont need help anymore
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!