The inventor of the cotton gin in Eli Whitney
what are we doing in that question
Explanation:
I dunno know
Answer is: 8568.71 of baking soda.
Balanced chemical reaction: H₂SO₄ + 2NaHCO₃ → Na₂SO₄ + 2CO₂ + 2H₂O.
V(H₂SO₄) = 17 L; volume of the sulfuric acid.
c(H₂SO₄) = 3.0 M, molarity of sulfuric acid.
n(H₂SO₄) = V(H₂SO₄) · c(H₂SO₄).
n(H₂SO₄) = 17 L · 3 mol/L.
n(H₂SO₄) = 51 mol; amount of sulfuric acid.
From balanced chemical reaction: n(H₂SO₄) : n(NaHCO₃) = 1 :2.
n(NaHCO₃) = 2 · 51 mol.
n(NaHCO₃) = 102 mol, amount of baking soda.
m(NaHCO₃) = n(NaHCO₃) · M(NaHCO₃).
m(NaHCO₃) = 102 mol · 84.007 g/mol.
m(NaHCO₃) = 8568.714 g; mass of baking soda.
Answer:
It is higher than that of water
Explanation:
Because we now know that through experimentation, the new compound has a higher and stronger hydrogen bonds than water, the specific heat capacity will be higher.
Specific heat capacity is the amount of heat needed to raise the temperature of a unit mass of as substance by 1°C.
- This property is a physical property of matter .
- Most physical properties are a function of intermolecular forces in a compound.
- Since hydrogen bond is a very strong intermolecular force, the specific heat capacity will be stronger for the compound discovered.
- This implies that it will require more heat to raise the temperature of a unit mass of this compound by 1°C.
The relation between vapour pressure , enthalpy of vapourisation and temperature is

ln (88/ 39) = DeltaH / 8.314 (1 / 318 - 1 / 298)
0.814 = DeltaH / 8.314 (2.11 X 10^-4 )
DeltaH = -32.07 kJ