For a standing wave on a string, the wavelength is equal to twice the length of the string:

In our problem, L=50.0 cm=0.50 m, therefore the wavelength of the wave is

And the speed of the wave is given by the product between the frequency and the wavelength of the wave:
Answer:
The induced emf in the coil is 0.522 volts.
Explanation:
Given that,
Radius of the circular loop, r = 9.65 cm
It is placed with its plane perpendicular to a uniform 1.14 T magnetic field.
The radius of the loop starts to shrink at an instantaneous rate of 75.6 cm/s , 
Due to the shrinking of radius of the loop, an emf induced in it. It is given by :

So, the induced emf in the coil is 0.522 volts.
Answer:
48.4 km, 34.3° north of east
Explanation:
Let's say east is the +x direction and north is the +y direction.
Adding up the x components of the vectors:
x = 20 cos 60 + 30 + 0
x = 40 km
Adding up the y components of the vectors:
y = 20 sin 60 + 0 + 10
y = 27.3 km
The magnitude of the displacement is:
d = √(x² + y²)
d = 48.4 km
The direction is:
θ = atan(y/x)
θ = 34.3° north of east
<span>Reducing the distance between them. In theory, also increasing the mass; but you can't really change the mass of an object. However, you can compare the forces if you replace an object by a different object, which has a different mass.
</span>
i hope this will work..
Answer: Earth scientists have theorized that the Earth's core is responsible for the planet's magnetic field as well as plate tectonics.
Explanation: