In the context of chemistry, yes. Energy input is always equal to the energy output.
Answer: Option (c) is the correct answer.
Explanation:
In liquids, molecules are held by slightly less strong intermolecular forces of attraction as compared to solids.
Hence, molecules of a liquid are able to slide past each other as they have more kinetic energy than the molecules of a solid.
As a result, liquids are able to occupy the shape of container in which they are placed. Also, liquids have fixed volume but no fixed shape.
Thus, we can conclude that liquids have a variable shape and a fixed volume.
When an electron in a quantum system drops from a higher energy level to a lower one, the system<u> emit a photon.</u>
<u />
The energy of the electron drops when it transitions levels, as well as the atom releases photons. The emission of the photon occurs as the electron transitions from an energy state to a lower state. The photon energy represents precisely the energy that would be lost when an electron moves to a level with less energy.
When such an excited electron transitions from one energy level to another, this could emit a photon. The energy drop would be equivalent to the power of the photon that is released. In electron volts, the energy of an electron, as well as its associated photon (emitted or absorbed) has been stated.
Therefore, when an electron in a quantum system drops from a higher energy level to a lower one, the system<u> emit a photon.</u>
<u />
To know more about electron
brainly.com/question/1255220
#SPJ4
<u />
Answer:
Fe₂O₃
Explanation:
To solve this question we must find the moles of Iron in 1.68g. With the difference of the masses we can find the moles of oxygen. The formula will be obtained with the ratio of both amount of moles:
<em>Moles Fe:</em>
1.68g * (1mol / 56g) =0.03moles
<em>Moles O:</em>
2.40g-1.68g = 0.72g * (1mol/16g) = 0.045moles
The ratio O/Fe is:
0.045moles / 0.03moles = 1.5 moles. this ratio is obtained if the formula is:
<h3>Fe₂O₃</h3>
The percent yield of the reaction between ammonia gas with oxygen gas is 90.52%.
A chemical reaction between ammonia gas (NH3) with oxygen gas (O2)
NH₃ + O₂ → NO₂ + H₂O
The balanced reaction 4NH₃ + 7O₂ → 4NO₂ + 6H₂O
Calculate the number of moles from the reactant
- Ammonia gas
Molar mass N = 14 gr/mol
Molar mass H = 1 gr/mol
Molar mass NH₃ = 14 + (3 × 1) = 14 + 3 = 17 gr/mol
mass = 28.5 grams
n = m ÷ molar mass = 28.5 ÷ 17 = 1.68 mol - Oxygen gas
Molar mass O = 16 gr/mol
Molar mass O₂ = 16 × 2 = 32 gr/mol
mass = 83.4 grams
n = m ÷ molar mass = 83.4 ÷ 32 = 2.61 mol - n O₂ ÷ coefficient O₂ = 2.61 ÷ 7 = 0.37
n NH₃ ÷ coefficient NH₃ = 1.68 ÷ 4 = 0.42
0.42 > 0.37 it means that the ammonia gas is in excess and the O₂ is limiting.
According to stoichiometry, the number of moles NO₂ with the number of moles O₂ has the ratio with the coefficient in reaction.
- Theoretically the number moles of NO₂
n O₂ : n NO₂ = 7 : 4
2.61 : n NO₂ = 7 : 4
n NO₂ = 4 x 2.61 : 7 = 1.49 mol - The actual number of moles NO₂
Molar mas NO₂ = 14 + (16 × 2) = 14 + 32 = 46 gr/mol
n NO₂ = m ÷ molar mass = 61.9 ÷ 46 = 1.35 mol
The percent yield NO₂ is the ratio of the actual number of moles NO₂ with the theoretical number of moles NO₂ times 100%.
P = (1.35 ÷ 1.49) × 100%
P = 0.9052 × 100%
P = 90.52%
Learn more about stoichiometry here: brainly.com/question/13691565
#SPJ4