Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
It is.
An acid will be strong when its conjugated base is highly stable, and vice-versa.
That can occur for instance through electronic delocalization.
Answer:
The heart and the blood vessels are a part of the circulatory system. The blood vessels include the arteries, veins and capillaries. The lungs are considered to be the pulmonary part of the circulatory system. The heart is the cardiovascular part of the circulatory system and the vessels are the systemic part of the circulatory system. The main function of the circulatory system is to supply all parts of the body with oxygenated blood and to take away the deoxygenated blood from all parts of the body.
That would be evaporation.
Hope this helped!! xx