Answer:
The reaction rate becomes quadruple.
Explanation:
According to the law of mass action:-
The rate of the reaction is directly proportional to the active concentration of the reactant which each are raised to the experimentally determined coefficients which are known as orders. The rate is determined by the slowest step in the reaction mechanics.
Order of in the mass action law is the coefficient which is raised to the active concentration of the reactants. It is experimentally determined and can be zero, positive negative or fractional.
The order of the whole reaction is the sum of the order of each reactant which is raised to its power in the rate law.
Thus,
Given that:- The rate law is:-
![r=k[A_2][B_2]](https://tex.z-dn.net/?f=r%3Dk%5BA_2%5D%5BB_2%5D)
Now,
and ![[B'_2]=2[B_2]](https://tex.z-dn.net/?f=%5BB%27_2%5D%3D2%5BB_2%5D)
So, ![r'=k[A'_2][B'_2]=k\times 2[A_2]\times 2[B_2]=4\times k[A_2][B_2]=4r](https://tex.z-dn.net/?f=r%27%3Dk%5BA%27_2%5D%5BB%27_2%5D%3Dk%5Ctimes%202%5BA_2%5D%5Ctimes%202%5BB_2%5D%3D4%5Ctimes%20k%5BA_2%5D%5BB_2%5D%3D4r)
<u>The reaction rate becomes quadruple.</u>
Answer:Well, if you mean atoms, it has 2 Hydrogen atoms and 1 Oxygen.
Explanation:Water is H20 therefore, it has 2 Hydrogen atoms and 1 Oxygen. Water isn't made up of particles, they are made of atoms.
We can use the ideal gas equation to determine the temperature with the given conditions of mass of the gas, volume, and pressure. The equation is expressed
PV=nRT where n is the number of moles equal to mass / molar mass of gas. Substituting the given conditions with R = 0.0521 L atm/mol K we can find the temperature
Answer: Fe2O3
Explanation: By applying crisscross method, the formula will be Fe2O3.