round up given mass to a whole number



Hence our answer is Rhodium-103
Explanation:
It is necessary that the glassware which we use during titration needs to be clean and dry before use because otherwise the remaining reagents will get mixed up with the solutions.
As a result, this will lead to a change in analysis results.
Hence, an error will occur in the resulting values.
Also, when not cleaned properly the any other substance remaining in the glassware might react with the solution leading to a change in the solution.
In that case also, error will occur.
Answer:
B. 111 J
Explanation:
The change in internal energy is the sum of the heat absorbed and the work done on the system:
ΔU = Q + W
At constant pressure, work is:
W = P ΔV
Given:
P = 0.5 atm = 50662.5 Pa
ΔV = 4 L − 2L = 2 L = 0.002 m³
Plugging in:
W = (50662.5 Pa) (0.002 m³)
W = 101.325 J
Therefore:
ΔU = 10 J + 101.325 J
ΔU = 111.325 J
Rounded to three significant figures, the change in internal energy is 111 J.
Answer:
In the acid-catalyzed dehydration of 2-methyl-2-butanol, the reaction can be driven to completion using Le Chatelier's principle. The reaction is driven to completion because the released water molecules form a strong bond with the acid used as a catalyst. As a result, the alkene produced can be distilled from the mixture.
Explanation:
In the acid-catalyzed dehydration of 2-methyl-2-butanol, the reaction can be driven to completion using Le Chatelier's principle. The reaction is driven to completion because the released water molecules form a strong bond with the acid used as a catalyst. As a result, the alkene produced can be distilled from the mixture.
Answer:
=C₄H₄O₂
Explanation:
Given the empirical formula of a molecule, the he the quotient of the molecular mas and and the empirical mass=constant.
84.0 g/mol/mass of(C₂H₂O)=constant
=84/(12×2+1×2×16)
=84/42
=2
Therefore, the molecular formula is (C₂H₂O)₂=C₄H₄O₂