the answer is a!! its pretty simple I just read the graph.
Answer:
-0.64525g
Explanation:
t = Time taken for the car to stop
u = Initial velocity = 95 km/h
v = Final velocity = 0 km/h
s = Displacement
a = Acceleration
Equation of motion

Converting to m/s²

g = Acceleration due to gravity = 9.81 m/s²
Dividing both the accelerations, we get

Hence, acceleration of the car is -0.64525g
<span><span>Fuel Extraction and Production – Water is a critical resource for the drilling and mining of natural gas, coal, oil, and uranium. In many cases, fuel extraction also produces wastewater, as with natural gas and oil wells and coal slurry ponds.
</span><span>
Fuel Refining and Processing – Oil, uranium, and natural gas all require refining before they can be used as fuels – a process that uses substantial amounts of water.
</span><span>
Fuel Transportation – Water is used to transport coal through slurries — pipelines of finely ground coal mixed with water — and to test energy pipelines for leaks.[1]</span><span>Emissions Control – Many thermoelectric power plants emit sulfur, mercury, particulates, carbon dioxide, and other pollutants, and require pollution control technologies. These technologies also require significant amounts of water to operate.</span></span>
Answer:0.669
Explanation:
Given
mass of clock 93 kg
Initial force required to move it 610 N
After clock sets in motion it requires a force of 514 N to keep moving it with a constant velocity
Initially static friction is acting which is more than kinetic friction
thus 613 force is required to overcome static friction


The RDS-220 <span>hydrogen bomb, soviet </span>