The kinetic energy of an object of mass m moving with speed v is given by:

For the bicycle in our problem,

and

, so the kinetic energy is
The major shortcoming of Rutherford's model was that it was incomplete. It did not explain how the atom's negatively charged electrons are distrubuted in the space surronding its positively charged nucleus. A form of energy that exhibits wavelike behavior as it travels through space
Answer:
s = 1.7 m
Explanation:
from the question we are given the following:
Mass of package (m) = 5 kg
mass of the asteriod (M) = 7.6 x 10^{20} kg
radius = 8 x 10^5 m
velocity of package (v) = 170 m/s
spring constant (k) = 2.8 N/m
compression (s) = ?
Assuming that no non conservative force is acting on the system here, the initial and final energies of the system will be the same. Therefore
• Ei = Ef
• Ei = energy in the spring + gravitational potential energy of the system
• Ei = \frac{1}{2}ks^{2} + \frac{GMm}{r}
• Ef = kinetic energy of the object
• Ef = \frac{1}{2}mv^{2}
• \frac{1}{2}ks^{2} + (-\frac{GMm}{r}) = \frac{1}{2}mv^{2}
• s =
s =
s = 1.7 m
The period of a pendulum is given by

where L is the pendulum length and g is the gravitational acceleration.
We can write down the ratio between the period of the pendulum on the Moon and on Earth by using this formula, and we find:

where the labels m and e refer to "Moon" and "Earth".
Since the gravitational acceleration on Earth is

while on the Moon is

, the ratio between the period on the Moon and on Earth is