Answer:
1. Theoretical yield = 2.03g
2. Actual yield 1.89g
Explanation:
Let us write a balanced equation. This is illustrated below:
Zn + 2HCI —> ZnCl2 + H2
Molar Mass of HCl = 1 +35.5 = 36.5g/mol
Mass of HCl from the balanced equation = 2 x 36.5 = 73g
Molar Mass of H2 = 2x1 = 2g/mol
1. From the equation,
73g of HCl produced 2g of H2.
Therefore, 74g of HCl will produce = (74 x 2)/73 = 2.03g
Therefore, theoretical yield = 2.03g
2. %yield = 93%
Theoretical yield = 2.03g
Actual yield =?
%yield = Actual yield /Theoretical yield x100
Actual yield = %yield x theoretical yield
Actual yield = 93% x 2.03 = (93/100)x2.03 = 1.89g
Actual yield =1.89g
The answer is an igneous rock.
Hope this helps!!
Answer:
The answer to your question is below
Explanation:
5) Fe₂O₃(s) + 3H₂O ⇒ 2Fe(OH)₃ (ac) Synthesis reaction
6) 2C₄H₁₀(g) + 13O₂(g) ⇒ 8CO₂ (g) + 10H₂O Combustion reaction
7) 2NO₂ (g) ⇒ 2O₂ (g) + N₂ (g) Decomposition reaction
8) H₃P (g) + 2O₂ (g) ⇒ PO (g) + 3H₂O Single replacement reaction
As far as I can tell the best answer for this would be (A) Neon. However, I would argue that this is at the very least a misleading question. Atoms are less identified by their electrons than their protons (which is represented always by its atomic number). Although atoms can gain or lose electrons, the protons would never change (and remain the same element). Personally, I would have written the question as, "When Magnesium loses its valence electrons, its new number of electrons would most closely resemble _____"