Answer:
This process is known as doping. It can be done by adding either of two types of impurity to the crystal.
(A) By adding electron rich impurities i.e., group 15 elements to the silicon and germanium of group 14 elements.
hope it's helpful
Question:
a. a direct linear relationship
b. an inverse linear relationship
c. a direct nonlinear relationship
d. an inverse nonlinear relationship
Answer:
The correct option is;
d. An inverse nonlinear relationship
Explanation:
From the universal gas equation, we have;
P·V = n·R·T
Where we have the temperature, T and the number of moles, n constant, therefore, we have
P×V = Constant, because, R, the universal gas constant is also constant, hence;
P×V = C

Since P varies with V then the graphical relationship will be an inverse nonlinear as we have
V P C
1 5 5
2 2.5 5
3 1.67 5
4 1.25 5
5 1 5
6 0.83 5
7 0.7 5
8 0.63 5
9 0.56 5
10 0.5 5
Where:
V = Volume
P = Pressure
C = Constant = 5
P = C/V
The graph is attached.
Answer:
Jack Beacuse...
Explanation:
the soil has water in it so it will be more than one matterial
First, find the volume the solution needs to be diluted to in order to have the desired molarity:
You have to use the equation M₁V₁=M₂V₂ when ever dealing with dilutions.
M₁=the starting concentration of the solution (in this case 2.6M)
V₁=the starting volume of the solution (in this case 0.035L)
M₂=the concentration we want to dilute to (in this case 1.2M)
V₂=the volume of solution needed for the dilution (not given)
Explaining the reasoning behind the above equation:
MV=moles of solute (in this case KCl) because molarity is the moles of solute per Liter of solution so by multiplying the molarity by the volume you are left with the moles of solute. The moles of solute is a constant since by adding solvent (in this case water) the amount of solute does not change. That means that M₁V₁=moles of solute=M₂V₂ and that relationship will always be true in any dilution.
Solving for the above equation:
V₂=M₁V₁/M₂
V₂=(2.6M×0.035L)/1.2M
V₂=0.0758 L
That means that the solution needs to be diluted to 75.8mL to have a final concentration of 1.2M.
Second, Finding the amount of water needed to be added:
Since we know that the volume of the solution was originally 35mL and needed to be diluted to 75.8mL to reach the desired molarity, to find the amount of solvent needed to be added all you do is V₂-V₁ since the difference in the starting volume and final volume is equal to the volume of solvent added.
75.8mL-35mL=40.8mL
40.8mL of water needs to be added
I hope this helps. Let me know if anything is unclear.
Good luck on your quiz!
Answer:
<h3>
Merits of modern periodic table:</h3>
- The wrong position of some elements like argon, potassium, cobalt and nickel due to atomic weights have been solved by arranging the elements in the order of increasing atomic number without changing their own places.
- The isotopes of some element have the same atomic numbers. Therefore, they find the same position in periodic table.
- It separates metals from non-metals.
- The groups of the table are divided into sub groups A and B due to their dissimilar properties which make the study of elements specific and easier.
- The representative and transition elements have been separated.
Hope this helps...
Good luck on your assignment...