Shear stress created the San Andreas Fault in Southern California. It is an example of a <span>reverse fault.</span>
While falling, both the sheet of paper and the paper ball experience air resistance. But the surface area of the sheet is much more than that of the spherical ball. And air resistance varies directly with surface area. Hence the sheet experiences more air resistance than the ball and it falls more slowly than the paper ball.
Hope that helps!
Normally, the water pressure inside a pump is higher than the vapor pressure: in this case, at the interface between the liquid and the vapor, molecules from the liquid escapes into vapour form. Instead, when the pressure of the water becomes lower than the vapour pressure, molecules of vapour can go inside the water forming bubbles: this phenomenon is called
cavitation.
So, cavitation occurs when the pressure of the water becomes lower than the vapour pressure. In our problem, vapour pressure at

is 1.706 kPa. Therefore, the lowest pressure that can exist in the pump without cavitation, at this temperature, is exactly this value: 1.706 kPa.
Given parameters:
First velocity = 2.50m/s
Time of travel = 3s
Second velocity = 1.50m/s
Unknown:
The displacement during the first interval = ?
Velocity is the displacement of a body with time. Displacement is a distance move in a specific direction by a body.
Velocity = 
So;
Displacement = Velocity x Time taken
Now input the parameter for the first velocity and time of travel;
Displacement = 2.5 x 3 = 7.5m
The displacement id 7.5m
Answer:
S = 122.5m
Explanation:
Given the following data;
Acceleration due to gravity = 9.8m/s²
Time, t = 5 seconds
Since it's a free fall, initial velocity, u = 0
To find the displacement, we would use the second equation of motion given by the formula;

Where;
- S represents the displacement or height measured in meters.
- u represents the initial velocity measured in meters per seconds.
- t represents the time measured in seconds.
- a represents acceleration measured in meters per seconds square.
Substituting into the equation, we have;

S = 122.5m.