Convert 38 ft/s^2 to mi/h^2. Then we se the conversion factor > 1 mile = 5280 feet and 1 hour = 3600 seconds.
So now we show it > 
Then we have to use the formula of constant acceleration to determine the distance traveled by the car before it ended up stopping.
Which the formula for constant acceleration would be > 
The initial velocity is 50mi/h 
When it stops the final velocity is 
Since the given is deceleration it means the number we had gotten earlier would be a negative so a = -93272.27
Then we substitute the values in....

So we can say the car stopped at 0.0134 miles before it came to a stop but to express the distance traveled in feet we need to use the conversion factor of 1 mile = 5280 feet in otherwards > 
So this means that the car traveled in feet 70.8 ft before it came to a stop.
Answer:
The electronic configuration of Fe2+ is 1s2 2s2 2p6 3s2 3p6 3d6 and Fe3+ is 1s2 2s2 2p6 3s2 3p6 3d5. Fe2+ contains 2 fewer electrons compared to the electronic configuration of Fe.
Light waves are reflected from front and back surfaces of the thin films and constructive interference between the two reflected waves occurs in different places for different wavelengths. Light shining on the upper surface of the thin film with thickness t is partly reflected at the upper surface (path abc). Light transmitted from the upper surface is partly reflected at the lower surface (path abdef). The two reflected waves come together at point P on the retina of the eye. Depending on the phase relationship, they may interfere constructively or destructively. Different colors have different wavelengths, so the interference may be constructive for some colors and destructive for others.
Answer:
The magnetic flux density is 
Explanation:
Given that,
Distance = 0.36 m
Current = 3.8 A
We need to calculate the magnetic flux density
Using formula of magnetic field

Where,
r = radius
I = current
Put the value into the formula


Hence, The magnetic flux density is 