Hi there!
Acceleration = change in velocity / change in time = Δv/Δt
Thus:
a = (75 - 15)/4 = 60/4 = 15 mi/hr²
Answer:

Explanation:
<u>Net Forces and Acceleration</u>
The second Newton's Law relates the net force
acting on an object of mass m with the acceleration a it gets. Both the net force and the acceleration are vector and have the same direction because they are proportional to each other.

According to the information given in the question, two forces are acting on the swimming student: One of 256 N pointing to the south and other to the west of 104 N. Since those forces are not aligned, we must add them like vectors as shown in the figure below.
The magnitude of the resulting force
is computed as the hypotenuse of a right triangle


The acceleration can be obtained from the formula

Note we are using only magnitudes here



Answer:
q = 8.61 10⁻¹¹ m
charge does not depend on the distance between the two ships.
it is a very small charge value so it should be easy to create in each one
Explanation:
In this exercise we have two forces in balance: the electric force and the gravitational force
F_e -F_g = 0
F_e = F_g
Since the gravitational force is always attractive, the electric force must be repulsive, which implies that the electric charge in the two ships must be of the same sign.
Let's write Coulomb's law and gravitational attraction
In the exercise, indicate that the two ships are identical, therefore the masses of the ships are the same and we will place the same charge on each one.
k q² = G m²
q =
m
we substitute
q =
m
q =
m
q = 0.861 10⁻¹⁰ m
q = 8.61 10⁻¹¹ m
This amount of charge does not depend on the distance between the two ships.
It is also proportional to the mass of the ships with the proportionality factor found.
Suppose the ships have a mass of m = 1000 kg, let's find the cargo
q = 8.61 10⁻¹¹ 10³
q = 8.61 10⁻⁸ C
this is a very small charge value so it should be easy to create in each one
To solve this problem we will apply the concepts related to the principle of destructive and constructive interference. Mathematically this expression can be given as

Here,
n = Index of refraction
t = Thickness
m = Order of the reflection
= Wavelength
We have all of this values, therefore replacing,

Therefore the thickness of the oil slick is 233nm