Answer:
The energy stored is: 62.5 Joules
Explanation:
Given
--- spring constant
--- stretch
Required
The amount of energy
This is calculated as:




Answer:
D) Higher Frequency
Explanation:
Higher frequency because it says a vehicle “towards” the officer
Answer:
Conociendo la velocidad inicial del proyectil y el angulo de lanzamiento con respecto ala horizontal.
Explanation:
Para poder anticipar la caída del proyectil es importante conocer la velocidad inicial del proyectil y el angulo de disparo del proyectil con respecto a la horizontal.
A continuación se presenta un diagrama o esquema donde se pueden ver estas variables y se explicaran a la brevedad:
Para poder encontrar el rango que es la máxima distancia horizontal recorrida por el proyectil debemos utilizar la siguiente ecuación:
![x=(v_{o})_{x} *t\\where:\\(v_{o})_{x} = velocidad inicial x-component [m/s]\\t= time [s]](https://tex.z-dn.net/?f=x%3D%28v_%7Bo%7D%29_%7Bx%7D%20%2At%5C%5Cwhere%3A%5C%5C%28v_%7Bo%7D%29_%7Bx%7D%20%3D%20velocidad%20inicial%20%20x-component%20%5Bm%2Fs%5D%5C%5Ct%3D%20time%20%5Bs%5D)
Para poder encontrar el tiempo debemos utilizar la siguiente ecuación:
![y=(v_{y} )_{o}*t-0.5*g*t^{2} \\donde:\\(v_{y} )_{o}= velocidad inicial componente y [m/s]\\g = gravity = 9.81 [m/s^2]\\t = time [s]](https://tex.z-dn.net/?f=y%3D%28v_%7By%7D%20%29_%7Bo%7D%2At-0.5%2Ag%2At%5E%7B2%7D%20%20%5C%5Cdonde%3A%5C%5C%28v_%7By%7D%20%29_%7Bo%7D%3D%20velocidad%20inicial%20componente%20y%20%5Bm%2Fs%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%20%5Bm%2Fs%5E2%5D%5C%5Ct%20%3D%20time%20%5Bs%5D)
En la anterior ecuación, igualamos y = 0, ya que cuando el proyectil cae al suelo la distancia vertical es cero. De esta manera podemos encontrar el tiempo t, ya que conocemos la velocidad inicial del proyectil en la componente y.
Seguidamente reemplazamos t en la primera ecuacion y encontramos la distancia x o el rango.
Answer:
<em>B) 1.0 × 10^5 V</em>
Explanation:
<u>Electric Potential Due To Point Charges
</u>
The electric potential produced from a point charge Q at a distance r from the charge is

The total electric potential for a system of point charges is equal to the sum of their individual potentials. This is a scalar sum, so direction is not relevant.
We must compute the total electric potential in the center of the square. We need to know the distance from all the corners to the center. The diagonal of the square is

where a is the length of the side.
The distance from any corner to the center is half the diagonal, thus


The total potential is

Where V1 and V2 are produced by the +4\mu C charges and V3 and V4 are produced by the two opposite charges of
. Since all the distances are equal, and the charges producing V3 and V4 are opposite, V3 and V4 cancel each other. We only need to compute V1 or V2, since they are equal, but they won't cancel.


The total potential is

