Answer:

Explanation:
<u>Coulomb's Law</u>
The force between two charged particles of charges q1 and q2 separated by a distance d is given by the Coulomb's Law formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We know both charges are identical, i.e. q1=q2=q. This reduces the formula to:

Since we know the force F=1 N and the distance d=1 m, let's find the common charge of the spheres solving for q:

Substituting values:


This charge corresponds to a number of electrons given by the elementary charge of the electron:

Thus, the charge of any of the spheres is:


weight = mg acts
downwards <span>
normal force = N acts upwards.
and force F acts at an angle θ below the horizontal.
(Let us assume that the woman pushes from the left, so F is
acted towards the right, which is below the horizontal)
so that, Frictional force, f=us*N acts towards the left
Now we balance the forces along x and y directions:
y direction: N = mg + F sinΘ
x direction: us * N = F cosΘ
We let the value of µs be equal to a value such that any F
will not be able to move the crate. Then, if we increase F by an amount F',
then the force pushing the crate towards the right also increases by F' cosΘ. Additionally,
the frictional force f must raise by exactly this amount.
Since f can’t exceed us*N, so the normal force must increase
by F' cosΘ/us.
Also, from the y direction equation, the normal force exceeds
by F' sin Θ.
<span>These two values must be the same, therefore:
<span>us = cot θ</span></span></span>
Explanation:
Below is an attachment containing the solution.
Answer:
x2 = 0.99
Explanation:
from superheated water table
at pressure p1 = 0.6MPa and temperature 200 degree celcius
h1 = 2850.6 kJ/kg
From energy equation we have following relation



![2850.6 + [\frac{50^2}{2} * \frac{1 kJ/kg}{1000 m^2/S^2}] = h2 +[ \frac{600^2}{2} * \frac{1 kJ/kg}{1000 m^2/S^2}]](https://tex.z-dn.net/?f=2850.6%20%2B%20%5B%5Cfrac%7B50%5E2%7D%7B2%7D%20%2A%20%5Cfrac%7B1%20kJ%2Fkg%7D%7B1000%20m%5E2%2FS%5E2%7D%5D%20%3D%20h2%20%2B%5B%20%5Cfrac%7B600%5E2%7D%7B2%7D%20%2A%20%5Cfrac%7B1%20kJ%2Fkg%7D%7B1000%20m%5E2%2FS%5E2%7D%5D)
h2 = 2671.85 kJ/kg
from superheated water table
at pressure p2 = 0.15MPa
specific enthalpy of fluid hf = 467.13 kJ/kg
enthalpy change hfg = 2226.0 kJ/kg
specific enthalpy of the saturated gas hg = 2693.1 kJ/kg
as it can be seen from above value hf>h2>hg, so phase 2 is two phase region. so we have
quality of steam x2
h2 = hf + x2(hfg)
2671.85 = 467.13 +x2*2226.0
x2 = 0.99